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Abstract.  In this letter, the concept of set-membership filtering (SMF) is extended to the affine projection 
algorithm with selective regressors (SR-APA), a novel set-membership SR-APA (SM-SR-APA) is 
established. The proposed algorithm exhibits superior performance with significant reduction in overall 
computational complexity due to data-selective step size. The usefulness of the proposed algorithms was 
demonstrated through simulations. 
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1. Introduction  
In adaptive filtering, the affine projection algorithm (APA) is attractive due to its fast convergence [1]-

[2]. However, its complexity is still too high for many applications. To improve the performance of the APA, 
the selective regressor APA (SR-APA) [3] have been recently proposed by selecting a subset of a fixed 
number of members from the input vectors at every adaption. Another approach to reduce computational 
complexity in adaptive filtering is set-membership filtering (SMF) [4]–[6], which feature reduced complexity 
due to data-selective updates. Based on the concept of SMF, Werner and Diniz proposed a simple SM-APA 
[5] with data-selective adaption. To further reduce the overall computational complexity the SM-APA with 
variable data-reuse factor (SM-APA vdr) [6] was presented by utilizing the information provided by the data-
dependent step size. In this paper we extended the SMF concept to the SR-APA, and established a set-
membership version SR-APA (SM-SR-APA). The proposed algorithm exhibits superior performance with 
significant reduction in the overall computational complexity compared with the original SR-APA. 

2. Improved SM-APA 
 In SMF the weight vector wk is updated such that the magnitude of the output estimation error, ek = 

dk−wk-1
Txk , is less than or equal to a deterministic threshold γ for all possible input desired signal pairs. 

where  xk, dk and ek are the input ,the desired and the output error signals, respectively. wk is the L1 column 
vector of filter coefficients at time k. As a result of the bounded error constraint, there will exist a set of 
filters rather than a single estimate.  

The SM-NLMS algorithm [4] uses only one constraint set in the adaptation whereas the SM-APA uses 
multiple constraint sets. The SM-APA performs weight adaption such that the updated weight vector belongs 
to the constraint sets at the P most recent iterations [5].The weight update of SM-APA is performed as 
follows: 
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where Gk=[gk gk-1…gk-P+1]T is the error-bound vector, Dk=[dk dk-1…dk-P+1]T is the desired ignal vector,Xk=[xk 

xk-1…xk-P+1] is the input signal matrix, and xk=[xk xk-1…xk-L+1]T is the input-signal vector, T
k k k kD X W E  is 
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the P1 error vector, i.e., [ek ek-1…ek-P+1]T ,and ek is the first element of Ek. The choice of Gk can vary for 

different problems. Werner and Diniz proposed a particularly simple SM-APA [5] by assigning gk-i+1=dk-i+1-

wk
Txk-i+1 for i1 to a posteriori error and gk=ek/|ek|. However, in the particular case of variable data reuses 

number , the simplified version is no longer guaranteed to provide |ek−i+1| ≤ γ for i1, to overcome this 

problem, the authors in [6] provided an algorithm that choose the elements of error-bound vector Gk as 

follows 
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for i=1,2,,P. With the above choice Gk, the SM-APA recursions become 
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Where ( (1), (2), , (p))k k k kdiag      is a diagonal matrix with 
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 for i=1,2,…,P. 

To distinguish from the SM-APA in [5]，we name it SM-APA with Matrix Step-size(SM-APA-M). 
Specially, by setting (1) ( )k k k P      we can get a simpler version of the above recursion as 
follows： 
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We call it SM-APA with uniform step-size(SM-APA-U). 
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Fig.1 the proposed SM-APA compared with SM-APA [5] and SM-APA-M [6] 


