

Set-membership Affine Projection Algorithm with Selective Regressors

Xiaoli Zhang 1+ and Yongquan Fan 1

¹ School of Mathematics & Computer Engineering, Xihua University, Chengdu 610039, China

(Received March 29, 2012, accepted July 20, 2012)

Abstract. In this letter, the concept of set-membership filtering (SMF) is extended to the affine projection algorithm with selective regressors (SR-APA), a novel set-membership SR-APA (SM-SR-APA) is established. The proposed algorithm exhibits superior performance with significant reduction in overall computational complexity due to data-selective step size. The usefulness of the proposed algorithms was demonstrated through simulations.

Keywords: set-membership filtering; affine projection; data-selective; system identification

1. Introduction

In adaptive filtering, the affine projection algorithm (APA) is attractive due to its fast convergence [1]-[2]. However, its complexity is still too high for many applications. To improve the performance of the APA, the selective regressor APA (SR-APA) [3] have been recently proposed by selecting a subset of a fixed number of members from the input vectors at every adaption. Another approach to reduce computational complexity in adaptive filtering is set-membership filtering (SMF) [4]–[6], which feature reduced complexity due to data-selective updates. Based on the concept of SMF, Werner and Diniz proposed a simple SM-APA [5] with data-selective adaption. To further reduce the overall computational complexity the SM-APA with variable data-reuse factor (SM-APA vdr) [6] was presented by utilizing the information provided by the data-dependent step size. In this paper we extended the SMF concept to the SR-APA, and established a set-membership version SR-APA (SM-SR-APA). The proposed algorithm exhibits superior performance with significant reduction in the overall computational complexity compared with the original SR-APA.

2. Improved SM-APA

In SMF the weight vector \mathbf{w}_k is updated such that the magnitude of the output estimation error, $e_k = d_k - \mathbf{w}_{k-1}^{\mathsf{T}} \mathbf{x}_k$, is less than or equal to a deterministic threshold γ for all possible input desired signal pairs. where x_k , d_k and e_k are the input, the desired and the output error signals, respectively. \mathbf{w}_k is the L×1 column vector of filter coefficients at time k. As a result of the bounded error constraint, there will exist a set of filters rather than a single estimate.

The SM-NLMS algorithm [4] uses only one constraint set in the adaptation whereas the SM-APA uses multiple constraint sets. The SM-APA performs weight adaption such that the updated weight vector belongs to the constraint sets at the P most recent iterations [5]. The weight update of SM-APA is performed as follows:

$$\mathbf{w}_{k+1} = \begin{cases} \mathbf{w}_k + X_k (X_k^T X_k)^{-1} (E_k - G_k) & |e_k| > \gamma \\ \mathbf{w}_{k+1} & otherwise \end{cases}$$
(1)

where $G_k = [g_k \ g_{k-1} \dots g_{k-P+1}]^T$ is the error-bound vector, $D_k = [d_k \ d_{k-1} \dots d_{k-P+1}]^T$ is the desired ignal vector, $X_k = [x_k \ x_{k-1} \dots x_{k-P+1}]^T$ is the input-signal vector, $\mathbf{E}_k = D_k - X_k^T W_k$ is

Corresponding author. Tel.: +86-13980767046. E-mail address: 260198@qq.com.

the P×1 error vector, i.e., $[e_k \ e_{k-1}...e_{k-P+1}]^T$, and e_k is the first element of E_k . The choice of G_k can vary for different problems. Werner and Diniz proposed a particularly simple SM-APA [5] by assigning $g_{k-i+1}=d_{k-i+1}-w_k^Tx_{k-i+1}$ for $i\neq 1$ to a posteriori error and $g_k=e_k/|e_k|$. However, in the particular case of variable data reuses number, the simplified version is no longer guaranteed to provide $|e_{k-i+1}| \leq \gamma$ for $i\neq 1$, to overcome this problem, the authors in [6] provided an algorithm that choose the elements of error-bound vector G_k as follows

$$g_{k-i+1} = \begin{cases} \gamma \operatorname{sign}(e_{k-i+1}), & \text{if } |e_{k-i+1}| > \gamma \\ e_{k-i+1}, & \text{otherwise} \end{cases}$$
 (2)

for i=1,2,...,P. With the above choice G_k , the SM-APA recursions become

$$\mathbf{w}_{k+1} = \begin{cases} \mathbf{w}_k + X_k (X_k^T X_k)^{-1} \Lambda_k \mathbf{E}_k & if |e_k| > \gamma \\ \mathbf{w}_k & otherwise \end{cases}$$
(3)

Where $\Lambda_k = diag(\mu_k(1), \mu_k(2), \dots, \mu_k(p))$ is a diagonal matrix with

$$\mu_{k}(i) = \begin{cases} 1 - \gamma / \left| E_{k}(i) \right| & \text{if } \left| E_{k}(i) \right| > \gamma \\ 0 & \text{otherwise} \end{cases} \text{ for } i=1,2,\ldots,P.$$

To distinguish from the SM-APA in [5], we name it SM-APA with Matrix Step-size(SM-APA-M). Specially, by setting $\mu_k = \mu_k(1) = \cdots = \mu_k(P)$ we can get a simpler version of the above recursion as follows:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \mu_k X_k (X_k^T X_k)^{-1} \mathbf{E}_k$$
 (4)

Where

$$\mu_{k} = \begin{cases} 1 - \gamma / |E_{k}(1)| & \text{if } |E_{k}(1)| > \gamma \\ 0 & \text{otherwise} \end{cases}$$

We call it SM-APA with uniform step-size(SM-APA-U).

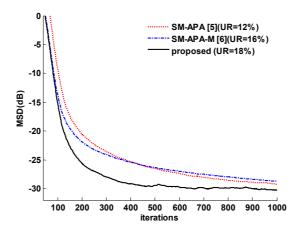


Fig. 1 the proposed SM-APA compared with SM-APA [5] and SM-APA-M [6]