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Abstract. This paper involves the development of the Tau method with Bernstein multi-scaling (BMS)
functions basis for the numerical solution of the Volterra-Fredholm Hammerstein integro-differential
equations (VFHIDES). For this purpose at the beginning we define BM S functions and express briefly some
properties of BMS functions and after function approximation by using BMS functions, will be presented.
Then, the operator matrix representation for the differential and integral parts seeming in the equation using
the operational Tau method base on BMS functions basis, will be displaced. The operational Tau method
transforms the differential and integration parts of the desired VFHIDESs to some operational matrices. In fact,
this method reduces VFHIDEs to a system of algebraic equations. Numerical examples demonstrate the
validity and applicability of the proposed method with BM S functions basis.

K eywor ds. Bernstein multi-scaling functions , Operational Tau method , Hammerstein integro-differential
equation, Algebraic equation, Fredholm, Volterra.

1. Introduction
Let us consider the general form of VFHIDE
Du(t) - 4, j;kl(t, S)G, (s, u(s))ds— 4, lez (t,5)G,(s,u(s))ds= f(t) 0<t<1, 1)
with n, independent boundary conditions
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where f (t), k;(t,s) and k,(t,s) are given continuous functions. 4,, 4, , ¢{ and ¢{?, are given constants
and t;,t, €[0,1]. u(t) is the unknown function to be determined and G, (s,u(s)),G,(s,u(s)) are analytic
functions of the unknown function u(s). n, is order of the differential operator D with polynomial
coefficients p, (t)

g d l _
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where ¢ isthedegreeof p.(t).

In this section, some numerical methods that discuss about solutions of Volterra-Fredholm integro-
differential equations will be presented. Ordokhani [1] has used walsh functions operational matrix with
Newton-Cotes nodes for solving Fredholm-Hemmerstein integro-differential equations. Arikoglu et a. [2]
by using differential transform method obtained numerical solution of integro-differential equations.
Babolian in [3], obtained solutions of nonlinear Volterra-Fredholm integro-differential equations by using

direct computational method and triangular functions. With in [4] , hybrid Legendre polynomials and Block-
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Pulse functions are presented to approximate the solution of Volterra-Fredholm integro-differential equations.
Saberi Nadjafi and Ghorbani in [5] have used his homotopy perturbation method for solving integral and
integro-differential equations.

Also, In [6-12] different numerical methods exist for resolving linear and nonlinear integro-
differential equations.

Recently, the authors, have used the operational Tau method for the numerical solution of linear and
nonlinear Fredholm and Volterra integral and integro-differential equations of second kind. Authors
[13—-19], developed the Tau method to find numerical solutions of the Fredholm, Volterra and Fredholm-
Volterraintegral and integro-differential equations with arbitrary polynomial bases.

In this work, we are interested in solving VFHIDES with an operational approach of the Tau method
based on BMS functions. Because in the Tau method, we obtain a system of algebraic equations wherein its
solution is easy. The paper is organized as follows: In Section 2, we define BMS functions and we give
function approximation by using BMS functions. We drive matrix representation of differential, integral and
supplementary conditions parts, in Section3. Numerical examples are given in Section 4 to illustrate the
accuracy of our method. Finally, concluding remarks are given in Section 5.

2. Basic definitions

2.1. Bernstein polynomialsand their properties
For m> 0, the Bernstein polynomials (B-polynomials) defined on the interval [0,1] asfollows [20]

m) . , m m
B,.t)=. t@-tu™, that | |=——,
‘ i i i'(m—i)!
where
i) B,(t)=0,if i<Oor i>m
i) \B ,(t),i= O,l,...,m} in Hilbert space L°[0,1] , is a complete non orthogonal set [21].

2.2. BMSfunctionsand function approximation
For m>1 and any positive integer kK >1, the BMS functions ¥, ,,i =0,1,....,mand n=0,1,....k-1 are
defined on theinterval [0,1) as [22]

n n+1
- <t —=

Wi a(t) = Bm(kt=1), k_t< ' ®3)
0 otherwise.

In equation (3), m is the order of B-polynomials on the interval [0,1], n is the trandation argument and t is
the normalized time.
If ¢(t) be a vector function of BMS functions on the interva [0,1), as

P(t) = ['//0,0 (t)"/ll,o (t)’---7Wm—1,o (t)’l//m,o (t)""’l/jo,k—l (t)"//l,k—l (t)""il//m—l,k—l (t)!l//m,k—l (t)]T , then by
taking integration of the cross product of two of these vector functions, a matrix of k(m+21)xk(m+1)
dimensional will be resulted which will be indicated as follow

1
D =<¢,4>=[4(t)¢" (t)ct. @
This matrix is known by dual operational matrix of @(t)([22]).
A function f(t) defined over [0,1] may be expanded in terms of BMS functions as

k-1 m

f (t) = szi,nWi,n (t) = FT¢(t)’

n=0i=0
where @(t) is the vector function defined before and C is a k(m+1)x1 vector given by
F =[fo0, frorr Fnsor Fmoreor foxas Fkcasor Traxets fmia] » @nd can be obtained by [22]
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