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Abstract. In this paper ,  a numerical solution based on parametric   cubic spline is used for finding the 
solution of boundary  value    problems arising in the calculus of variations .  The present   approach has less 
computational coast and gives better   approximation .  This approximation reduce the problems to an   explicit 
system of algebraic equations .  Some numerical examples   are also given to illustrate the accuracy and 
applicability of the   presented method.  
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1. Introduction  
The calculus of variations and its extensions   are devoted to finding the optimum function that gives the 
best   value of the economic model and satisfies the constraints of a   system .  The need for an optimum 
function ,  rather than an optimal   point ,  arises in numerous problems from a wide range of fields 
in   engineering and physics ,  which include optimal 
control ,  transport   phenomena ,  optics ,  elasticity ,  vibrations ,  statics and dynamics of   solid bodies and 
navigation[1] .  In computer vision the calculus of   variations has been applied to such problems as estimating 
optical   flow [2] and shape from shading [3] .  Several numerical methods for   approximating the solution of 
problems in the calculus of   variations are known .  Galerkin method is used for solving   variational problems 
in [4] .  The Ritz method [5] ,  usually based on   the subspaces of kinematically admissible complete 
functions ,  is   the most commonly used approach in direct methods of solving   variational problems .  Chen and 
Hsiao [6] introduced the Walsh   series method to variational problems .  Due to the nature of the   Walsh 
functions ,  the solution obtained was piecewise constant.   Some orthogonal polynomials are applied on 
variational problems to   find the continuous solutions for these problems [7-9] .  A simple   algorithm for 
solving variational problems via Bernstein   orthonormal polynomials of degree six is proposed by Dixit et 
al.   [10] .  Razzaghi et al .  [11] applied a direct method for solving   variational problems using Legendre 
wavelets .  Adomian   decomposition method has been employed for solving some problems   in calculus of 
variations in [12]. 
       Spline functions are special functions in the space of which   approximate solutions of ordinary 
differential equations .  In other   words spline function is a piecewise polynomial satisfying certain   conditions 
of continuity of the function and its derivatives .  The   applications of spline as approximating ,  interpolating 
and curve   fitting functions have been very successful[13-16] .  In [17] ,  a  cubic non-polynomial spline 
technique has been developed for the   numerical solutions of a system of fourth order boundary 
value   problems associated with obstacle ,  unilateral and contact   problems .  Quadratic and cubic polynomial 
and non-polynomial spline   functions based methods have been presented to find approximate   solutions to 
second order boundary value problems[18] .  Parametric   spline method for a class of singular two-point 
boundary value   problems has been developed by Rashidinia et al .  [19] .  The main   purpose of the present 
paper is to use parametric cubic spline   method for numerical solution of boundary value problems 
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which   arise from problems of calculus of variations .  The method consists   of reducing the problem to a set of 
algebraic equations.  
      The outline of the paper is as follows .  First ,  in Section 2 we   introduce the problems in calculus of 
variations and explain their   relations with boundary value problems .  Section $3$ outlines   parametric cubic 
spline and basic equations that are necessary for   the formulation of the discrete system .  Also in this 
section ,  we   report our numerical results and demonstrate the efficiency and   accuracy of the proposed 
numerical scheme by considering two   numerical examples.  

2. Statement of the problem 
 The genaral form of a variational problem is finding extremum of   the functional  
 

1 2 1 2 1 2[ ( ), ( ), , ( )] , ( ), ( ), , ( ), ( ), ( ), , ( ) .( )b

n na nJ u t u t u t G t u t u t u t u t u t u t dt′ ′ ′… = … …∫              (1) 
  

To find the extreme value of J ,  the boundary conditions of the   admissible curves are known in the 
following  form: 

( ) ,       1,2, , ,i iu a i nγ= = …                                                           (2) 

 ( )       1,2 , ., ,i iu b i nδ= = …                                                            (3) 

 The necessary condition for ( ), 1,2, ,iu t i n= …  to   extremize 1 2[ ( ), ( ), , ( )]nJ u t u t u t…  is to satisfy 
the   Euler-Lagrange equations that is obtained by applying the well   known procedure in the calculus of 
variation [5],  
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                                           (4)  

subject to the boundary conditions given by Eqs .  (2)-(3). 
       In this paper ,  we consider the spacial forms of the variational   problem (1) as  
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with boundary conditions  
( ) ,  ( ) ,u a u bγ δ= =                                                                      (6) 

 
 and  
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 subject to boundary conditions  

1 1 1 1,  ( ) ( ) ,u a u bγ δ= =                                                                     (8) 

2 2 2 2,  ( ) ( ) .u a u bγ δ= =                                                                    (9) 

 
Thus ,  for solving the variational problems (5) ,  we consider the   second-order differential equation 
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 with the boundary condition (6) .  And also ,  for solving the   variational problems (7) ,  we find the solution of 
the system of   second-order differential equations  
 


