

An Improvement on the Hardy-Hilbert Integral Type Inequality

YaPing Cheng ¹, TaiZhong Zhang ²⁺

¹ Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing, 210044, China

School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China

² School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, China

(Received January 23, 2013, accepted August 22, 2013)

Abstract. In this paper, a new Hardy-Hilbert integral inequality is obtained by proving an inequality on weight coefficients.

Keywords: Hardy-Hilbert inequality, Hölder inequality, weight coefficient.

1. Introduction

In this paper, we study the famous Hardy Hilbert inequality. $f \in L^p$ denotes a measurable function fsatisfying $\int_0^{+\infty} |f(x)|^p dx < \infty$, where p > 0. If $f \in L^p$, $g \in L^p$, $f \ge 0$, $g \ge 0$, $p^{-1} + q^{-1} = 1$, p > 1, q > 1, then we have

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{f(x)g(y)}{x+y+1} dx dy < \frac{\pi}{\sin(\pi/p)} \left(\int_{0}^{+\infty} f^{p}(x) dx \right)^{1/p} \left(\int_{0}^{+\infty} g^{q}(y) dy \right)^{1/q}. \tag{1}$$

Inequality (1) is called the Hardy Hilbert integral inequality, that is, as follows:

$$\int_0^{+\infty} \left(\int_0^{+\infty} \frac{f(x)}{x+y+1} dx \right)^p dy < \left(\frac{\pi}{\sin(\pi/p)} \right)^p \int_0^{+\infty} f^p(x) dx.$$
 (2)

In 2003, Yang[1] obtained the following result.

$$\int_0^{+\infty} \int_0^{+\infty} \frac{f(x)g(y)}{x+y+1} dxdy$$

$$< \left(\int_0^{+\infty} \left[\frac{\pi}{\sin(\pi/p)} - \frac{1}{13(x+1)(2x+1)^{1/p}} \right] f^p(x) dx \right)^{1/p} \left(\int_0^{+\infty} \left[\frac{\pi}{\sin(\pi/q)} - \frac{1}{13(y+1)(2y+1)^{1/p}} \right] g^q(y) dy \right)^{1/q}. (3)$$

In the special case
$$p = q = 2$$
,
$$\int_0^{+\infty} \int_0^{+\infty} \frac{f(x)g(y)}{x + y + 1} dx dy$$

$$< \left(\int_0^{+\infty} \left[\pi - \frac{1}{13(x+1)(2x+1)^{1/2}} \right] f^2(x) dx \right)^{1/2} \left(\int_0^{+\infty} \left[\pi - \frac{1}{13(y+1)(2y+1)^{1/2}} \right] g^2(y) dy \right)^{1/2}. \tag{4}$$

In the paper, we obtain an improvement form of the above by means of the H \ddot{o} lder inequality and related lemmas.

Corresponding author. Tel.: +86-25-58731160. E-mail address: zhangspaces@163.com.

2. New Results and their Proofs

2.1. Some lemmas

Lemma 1 Let r > 1, y > 0, then we have the following inequality on weight coefficients:

$$\omega(y,r) \stackrel{\text{def}}{=} \int_{0}^{+\infty} \frac{1}{x+y+1} \left(\frac{2y+1}{2x+1}\right)^{1/r} dx < \frac{\pi}{\sin(\pi/r)} - \frac{2}{3(r-1)(2y+1)^{1-1/r}}.$$
Proof: Let $f_{y}(x) = \frac{1}{x+y+1} \left(\frac{2y+1}{2x+1}\right)^{1/r}$, then
$$\int_{0}^{+\infty} f_{y}(x) dx = \int_{\frac{1}{2y+1}}^{+\infty} (1+u)^{-1} u^{-1/r} du = \frac{\pi}{\sin(\pi/r)} - \int_{0}^{\frac{1}{2y+1}} (1+u)^{-1} u^{-1/r} du,$$

$$\int_{0}^{\frac{1}{2y+1}} (1+u)^{-1} u^{-1/r} du > \frac{1}{(2y+1)^{1-1/r}} \left[\frac{r}{r-1} \frac{2y+1}{2(y+1)} + \frac{r^2}{(r-1)(2r-1)} \frac{2y+1}{4(y+1)^2} \right],$$

$$\omega(y,r) < \frac{\pi}{\sin(\pi/r)} - \frac{1}{(2y+1)^{1-1/r}} \left[\frac{r}{r-1} - 1 - \frac{1}{3r} \right] \frac{2y+1}{2(y+1)} + \frac{r^2}{(r-1)(2r-1)} \frac{2y+1}{4(y+1)^2} - \frac{2y+1}{12(y+1)^2} \right],$$

where.

$$\frac{\left(\frac{r}{r-1} - 1 - \frac{1}{3r}\right) \frac{2y+1}{2(y+1)} = \frac{2}{3(r-1)} + \frac{2y+1}{6r(r-1)(y+1)} - \frac{1}{3(r-1)(y+1)},}{\frac{r^2}{(r-1)(2r-1)} \frac{2y+1}{4(y+1)^2} > \frac{1}{4(y+1)} + \frac{3}{8(r-1)(y+1)} - \frac{1}{8(y+1)^2} - \frac{3}{16(r-1)(y+1)^2},}{\frac{2y+1}{12(y+1)^2} = \frac{1}{6(y+1)} - \frac{1}{12(y+1)^2},}$$

Hence,

$$a(y,r) < \frac{\pi}{\sin(\pi/r)} - \frac{1}{(2y+1)^{1-1/r}} \left[\frac{2}{3(r-1)} + \frac{2y+1}{6r(r-1)(y+1)} + \frac{2r-1}{24(r-1)(y+1)} - \frac{2r+7}{48(r-1)(y+1)^2} \right],$$

by computation, we obtain

$$\frac{2y+1}{6r(r-1)(y+1)} + \frac{2r-1}{24(r-1)(y+1)} - \frac{2r+7}{48(r-1)(y+1)^2} > \frac{6r^2 - 11r + 48}{48r(r-1)(y+1)^2} > 0.$$

So we complete the proof of lemma 1

Lemma 2 (H \ddot{o} lder inequality)[2] If $f \in L^p(E)$, $g \in L^q(E)$, E is measurable set, p > 1, $p^{-1} + q^{-1} = 1$, then $fg \in L^1(E)$ and

$$\int_{E} |f(x)g(x)| dx \le \left(\int_{E} |f(x)|^{p} dx \right)^{1/p} \left(\int_{E} |g(x)|^{q} dx \right)^{1/q}.$$

2.2. Main results

Theorem 1 If
$$f \in L^p$$
, $g \in L^p$, $f \ge 0$, $g \ge 0$, $p^{-1} + q^{-1} = 1$, $p > 1$, $q > 1$, then we have
$$\int_0^{+\infty} \int_0^{+\infty} \frac{f(x)g(y)}{x + y + 1} dx dy$$