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Abstract. In this paper, a new Hardy-Hilbert integral inequality is obtained by proving an inequality on
weight coefficients.
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1. Introduction
In this paper, we study the famous Hardy Hilbert inequality. f € L” denotes a measurable function f

+oo p
satisfying J.O |f(x) dx<eo where p>0. If felP, gel®, f>0, g=0, p*+q*=1, p>1,

g>1, then we have

we v £ (X)g(y) n T VP e 1
_[0 _[0 mdxdy<muo f (x)dx] UO g (y)dy) : 1)
Inequality (1) is called the Hardy Hilbert integral inequality, that is, as follows:
soof g F(X) P T P e
—d —_— f P(x)dx. 2
IO UO X+y+1 Xj dy<(sin(7z/ p)] -[0 (xjex @

In 2003, Y ang[1] obtained the following result.
J”’NJ”roo f (X)g(y) dXdy
0 J0 x+y+1

oo T 1 p ’’ oo 4 1 q -
<[L {sir(;z/ p)_li{x+1)(2x+1)”p} (X)dxj (Io Ln(zr/q>_1a(y+1)(2y+1)”p}g (y)dyJ o

In the specia case p=Qq=2,

j+mj+m f(X)g(y) dXdy
0 X+y+1

{f . {E_lé(x +1)(12X +1)u2}f Z(X)dXTZU . {”—ﬁ(y +1)(12y +1)y2}92(y)dyr- (@)

In the paper, we obtain an improvement form of the above by means of the H 6 Ider inequality and
related lemmas.
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2. New Resultsand their Proofs

2.1. Somelemmas

Lemmal Let r >1, y> 0, then we have the foloeing inequality on weight coefficients:

W e 1 (2y+1)" 0 2
)= d - : 5
ofy.r)=], x+y+1\2x+1j S sin(zir) 3Ar -1)(2y+1) " ©

1/r
Proof: Let f, (x)= 1 (2y+lj , then
X+y+1\ 2x+1

1

AL+ u)u"du,

'[ (x)dx'[ Q+u)u Y du=—72F —J
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Hence
< T 1 2 2y+1 -1 2r+7
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by computation, we obtain
2y+1 2r-1 2r+7 6r>—11r + 48

>
6r(r 1)(y+1) 24r-1)y+1) 4gr-1)(y+1° 48r(r—1)(y+1)2
So we complete the proof of lemma 1.

Lemma 2 (H 6 Ider inequaity)[2] 1If felP(E), ge L%(E), E is measurable set, p>1,
pt+q*t=1,then fge L'(E) and

IE| f (X)Q(X)|dxg UE| f (X)|pdlelpUE|g(x)|qu)1/q

2.2. Main results

Theorem1 If feLp ge L°, f>0,9=0, p*+q*=1, p>1, g>1, thenwehave

+oo +oof
I I x+y+1 dxdy
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