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Abstract. The stability of a second-order system is studied under diffusion process modeling for damping
ratio and natural frequency parameters. The probability of stability is derived and it is described how this
probability is computed for various selects of parameters of diffusion processes. Finally, a conclusion section
is also given.
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1. Introduction

The characteristic equation plays important role for checking the stability of a system. The stability
requires all roots of characteristic equation to be in the open left half s-plane.
For a system represented as n-order differential equation, the characteristic equation is an algebraic equation
of degree n which is obtained by replacing simply the solution with exp{sx} where X is the input process and
S is an arbitrary complex number. For example, for a classical second order system, the characteristic
equation is given by
s*+2pW,s+W, =0
@ and w, are damping ratio and natural frequency, respectively.
The damping ratio ¢ is a positive coefficient with no dimension which describes how oscillations in
a system decay after a disturbance. In practice, there are four cases related to p<lL,p>lLp=1and ¢ -0

referred as under-damped, over-damped, critically damped and un-damped (see Stremmen Melbgand
Higham (2004)). When system differential equation is linear, homogenous with constant coefficients, the
damping ratio and natural frequency are independent of time t. However, these parameters may depend on t,
in practical situations. Also, systems with random parameters appear frequently in industry. For deterministic
system, parameters of systems determine that they are stable or unstable. For stochastic system, the
probability of stability specifies a score for chance of stability.

Stengel and Ray (1991) studied the effects of parameter uncertainty on system stability by
considering ¢ and w, as normally distributed random variables. In this paper, we consider a stochastic
process model for random time-dependent damping ratio ¢, and W, .

This paper is organized as follows. In the next section, we study the suitable model for ¢, . The

stability analysis is proposed in section 3. Some examples are given in section 4. Conclusions are proposed
in section 5.

2. Models of ¢, andw}

Here, we propose two stochastic process models for ¢, andw; . To extend work of Stengel and Ray
(1991), the first attempt is to assume that
¢ of
B = GJ.O p,ds
i.e., ¢dt=0'dB', where B[ is the standard Brownian motion on [0,1) and &' =6"' > 0. For the next step, we
may assume that ¢, satisfies in a stochastic differential equation given by
do, =a(p,)dt +b(e,)dB|
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(see Kloeden and Platen (1999)). In this note, we assume that ax=ax and b(x)=0c, where o >0 and
—-1<a <0. To see the reason of this selection, note that for -1<«a <0 and small o ’s, we make sure that ¢,

remains on (0, 1) and the related system is under-damped.
To describe more, we use the Euler discrete sampling scheme to find that ¢, is presented as

o =(a+Dg., +0oZ,
where Z, is a sequence of iid normally distributed random variables. Note that a +1€(0,1)
and for small o ’s, all of ¢, remains in (0, 1). A formal model to this end in the literatures is the Ornstein-
Uhlenbeck process defined by

do, =-Bpdt + cdB]
where S e (0, 1). The stability analysis under this choice is studied under this modeling.
Finally, we simply let

B = 9[ wids

i.e., W.dt=9"dB;, and B} is another standard Brownian motion on [0,1) independent of B/

3. Stability analysis

In this section, we study the probability of stability under the modeling assumption of section 2. We first
drop the index t and after calculating the probability of stability, we add t to the results. Let us, first, discuss

about the zeros which are
—oW, k| W, [o* ~1

First, suppose that ¢’ > 1, then stability condition is satisfied if w, >0 Because in this case,

_¢’Wn <|Wn | VQ)Z -1 <¢)Wn

Therefore, for this case, the stability is equivalent to ¢° >1 and w, >0 Next, suppose that ¢* <1, then
roots are
ow, W, [V1-¢*j,  j=v-1

Thus, we should have —pw, <0 or equivalently pw, >0

Hence, in this case, the stability is ¢* <1 and gw, > 0. Finally, the probability of stability is
p="P(¢’ >1,w, >0)+P(p’ <1,0w, >0)

Example 1. Suppose that ¢ and w, are independent come form N(0.7, 1) and N(1, 1) distributions,
respectively. Then, using a Monte Carlo simulation study with 10000 repetitions, we have p = 0.7058.

Example 2. Let ¢ > 0, then p =P(w, > 0). Or, if w, >0, then
p=P(¢’ >1)+P(p’ <L,w, >0)

In section 2, we assumed that ¢ and w, are independent. Therefore,

p, = P(p} >1HP(W: > 0)+

P(0< g <)P(W, >0)+

P(-1< ¢, <0)P(W, >0)
The p, is computed using the models of ¢, andw; . It is advised to plot 1 — p, against time to display

the probability of instability for a given instant t.

4. Computations

To compute p, for, say, t<[0,1], it is enough to compute the P(p <x) and P(w; <x,) fort=
0(0.02)1 using a Monte Carlo method for a given set of hyper-parameters S, o and v. Therefore, in
this way, the plot of instability probability is drawn. When g=0 (a unit root problem for discrete
time case) or = ¢, close to zero (a near unit root (perturbation) case), the probability pt is given by
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