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Abstract. The conservative domain decomposition procedure for solving the variable coefficient diffusion
equation is presented. In this procedure, the fluxes at the interface of subdomains are properly defined, which
results in the unconditional stability of the procedure. Numerical results examining the stability, the second-
order accuracy of solution values aswell as fluxes, and parallelism of the procedure are also presented.
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1. Introduction

The diffusion eguation is a basic topic, for many equations include the diffusion term, such as Sobolev
eguation, convection diffusion equations, and so on. The sequent finite difference methods are considered
subject to such equations (see [8,9]). There is rich literature on paralel finite difference methods (see
[1,2,3,4,5,6,7]). Domain decomposition is a powerful tool for devising parallel methods to solve the diffusion
equation. The basic procedure of domain decomposition methods is to first decompose the domain into some
subdomains, then define the interface values of subdomains by explicit schemes and the inner values of
subdomains by implicit schemes. Once the interface values are available, the global problem is decoupled
and parallélization is achieved. Domain decomposition methods with unconditional stability are desired in
the application. However, most domain decomposition methods are conditionally stable . The major
difficulty devising domain decomposition methods with unconditional stability is defining the suitable
interface values of subdomains. It's also an issue to consider conservative domain decomposition methods,
for some diffusion problems have the conservation property. Conservative domain decomposition procedures
for the constant coefficient diffusion equation are considered in [1,3,6], in which the scheme in [1] is
unconditionally stable. The purpose of this paper is to present the conservative domain decomposition
procedure with unconditional stability for the following variable coefficient diffusion problem

U, ()~ (% DU, (x 1), =0, (xt)e 0.Dx(0.T], LY
U,(0,t)=U, (Lt)=0, te(0O,T], (1.2)
U(x,0)=U,(x), xe[01], (1.3
where a(X,t) issmooth enough and 0 < ax(X,t) < & . Define the flux
Q(xt) =—a(x,t)U, (X t). (1.4
Then (1.1) and (1.2) become as
U, +Q, =0, (xt)e (0,)x(0,T], (1.5
and
QOt)=Q(Lt)=0, te(O,T]. (1.6)

From (1.5) and (1.6), thereis
d e
— j Udx=0,
dt Jo

which expresses conservation of mass. For the above problem, giving the solution U and flux Q the same

second-order accuracy approximations, we consider the block-centered finite difference discretization.
The rest of this paper is organized as follows. In the next section, we present the domain decomposition
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procedure. In Section 3, we prove the unconditional stability. In Section 4, we examine numerically the
stahility, accuracy, and parallelism of the procedure. In the final section, we give a conclusion.

2. Domain Decomposition Scheme
Divide the domain [0,1] X[0,T] by aset of lines parallel to the X - and t -axes. The crossing points are
O=Xy, <Xy <+ <Xy =1

0=t<tl<...<tN =T.

Denote
" =t"—t"!, 1<n<N,
h =X, X4, 1Si<l,
x =dwe T hae gcjqy,
2
+ .
hwz:)ﬂu_x:%, 1<i<l -1
and

h=maxh, Z=minh, At=maxz".

Let f." be the discrete function on {(Xi,t”)} and f.7,, be the discrete function on {()ng,t”)} . Define the
difference operators

n n-1 n n n n
A f" :#, A, f" :M’ AfN, = firve— filua ’
4 I’]+1/2 h

and the discrete norms

117 IE= X (R, 7 IP=3 () h e

Denote U" =U (x,t"), Q",, =Q(X,,,,t") . And let u” and @, be the numerical approximations of

U" and Q",,. For simplicity, assume a decomposition of the domain [0,1]x[0,T] into two subdomains

[0,X]x[0,T] and [X,1]x[0,T], where X = X,,,,, for someinteger k, O<k <1 . It's easy to extend to the

case of multiple subdomains. Next we give the domain decomposition procedure.
Approximate the equation (1.5) by

AU'+AQ,,=0 1<i<lI. (2.1)
Enforce the boundary condition (1.6) by
,=0,=0 1<n<N, (2.2)
and the initial condition by
u=Uy(x), 1<i<l. (2.3)

| |
Sum for (2.1), by the boundary condition (2.2), there is z u' = Z u"", which simulates conservation of

1
i=1 i=1
mass. So, we call the scheme (2.1) conservative scheme.
We further define the approximating values of fluxes. For 1<i < | —1i #Kk, approximate Q", , by
Ohaz = —0h,A U (24

Suppose U and Q are smooth enough, it's easily get from the Taylor expansion that (2.1) and (2.4) have the
second-order truncation error O(h? + At) if At/ A? is any congtant. To define g, with the second-order
truncation error, from (1.4) and (1.5), we have
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