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Abstract. The conservative domain decomposition procedure for solving the variable coefficient diffusion 
equation is presented. In this procedure, the fluxes at the interface of subdomains are properly defined, which 
results in the unconditional stability of the procedure. Numerical results examining the stability, the second-
order accuracy of solution values as well as fluxes, and parallelism of the procedure are also presented. 
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1. Introduction  
The diffusion equation is a basic topic, for many equations include the diffusion term, such as Sobolev 

equation, convection diffusion equations, and so on. The sequent finite difference methods are considered 
subject to such equations (see [8,9]). There is rich literature on parallel finite difference methods (see 
[1,2,3,4,5,6,7]). Domain decomposition is a powerful tool for devising parallel methods to solve the diffusion 
equation. The basic procedure of domain decomposition methods is to first decompose the domain into some 
subdomains, then define the interface values of subdomains by explicit schemes and the inner values of 
subdomains by implicit schemes. Once the interface values are available, the global problem is decoupled 
and parallelization is achieved. Domain decomposition methods with unconditional stability are desired in 
the application. However, most domain decomposition methods are conditionally stable . The major 
difficulty devising domain decomposition methods with unconditional stability is defining the suitable 
interface values of subdomains. It’s also an issue to consider conservative domain decomposition methods, 
for some diffusion problems have the conservation property. Conservative domain decomposition procedures 
for the constant coefficient diffusion equation are considered in [1,3,6], in which the scheme in [1] is 
unconditionally stable. The purpose of this paper is to present the conservative domain decomposition 
procedure with unconditional stability for the following variable coefficient diffusion problem  
 ( ) ( ( ) ( )) 0 ( ) (0 1) (0 ]t x xU x t x t U x t x t Tα, − , , = , , ∈ , × , ,  (1.1) 

(0 ) (1 ) 0 (0 ]x xU t U t t T, = , = , ∈ , ,  (1.2) 

0( 0) ( ) [0 1]U x U x x, = , ∈ , ,  (1.3) 

where ( )x tα ,  is smooth enough and 0 ( )x tα α< , ≤ . Define the flux  

 ( ) ( ) ( )xQ x t x t U x tα, = − , , .  (1.4) 
Then (1.1) and (1.2) become as  
 0 ( ) (0 1) (0 ]t xU Q x t T+ = , , ∈ , × , ,  (1.5) 
and 
 (0 ) (1 ) 0 (0 ]Q t Q t t T, = , = , ∈ , .  (1.6) 
From (1.5) and (1.6), there is  

 
1

0
0d U dx

dt
= ,∫  

which expresses conservation of mass. For the above problem, giving the solution U  and flux Q  the same 
second-order accuracy approximations, we consider the block-centered finite difference discretization.  

The rest of this paper is organized as follows. In the next section, we present the domain decomposition 
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procedure. In Section 3, we prove the unconditional stability. In Section 4, we examine numerically the 
stability, accuracy, and parallelism of the procedure. In the final section, we give a conclusion. 

2. Domain Decomposition Scheme  
Divide the domain [0 1] [0 ]T, × ,  by a set of lines parallel to the x - and t -axes. The crossing points are  

 1 2 3 2 1 20 1Ix x x/ / + /= < < < = ,L  
 
 0 10 Nt t t T= < < < = .L   
Denote  

 

1

1 2 1 2

1 2 1 2

1
1 2 1

1
1

1
2

1 1
2

n n n

i i i

i i
i

i i
i i i

t t n N
h x x i I

x xx i I

h hh x x i I

τ −

+ / − /

− / + /

+
+ / +

= − , ≤ ≤ ,
= − , ≤ ≤ ,

+= , ≤ ≤ ,

+= − = , ≤ ≤ − ,

 

and 
 max min max n

i iii n
h h h t τ= , = , Δ = .h  

Let n
if  be the discrete function on { }( )n

ix t,  and 1 2
n

if + /  be the discrete function on { }1 2( )n
ix t+ / , . Define the 

difference operators  
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and the discrete norms  
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Denote ( )n n

i iU U x t= , , 1 2 1 2( )n n
i iQ Q x t+ / + /= , . And let n

iu  and 1 2
n
iq + /  be the numerical approximations of 

n
iU  and 1 2

n
iQ + / . For simplicity, assume a decomposition of the domain [0 1] [0 ]T, × ,  into two subdomains 

[0 ] [0 ]x T, × ,  and [ 1] [0 ]x T, × , , where 1 2kx x + /=  for some integer k , 0 k I< < . It’s easy to extend to the 
case of multiple subdomains. Next we give the domain decomposition procedure.  

Approximate the equation (1.5) by  
 1 2 0 1n n

i iu q i Iτ − + /Δ + Δ = , ≤ ≤ .  (2.1) 
Enforce the boundary condition (1.6) by  
 1 2 1 2 0 1n n

Iq q n N/ + /= = , ≤ ≤ ,  (2.2) 
and the initial condition by  
 0

0 ( ) 1i iu U x i I= , ≤ ≤ .  (2.3) 

Sum for (2.1), by the boundary condition (2.2), there is 1

1 1

I I
n n
i i

i i
u u −

= =

=∑ ∑ , which simulates conservation of 

mass. So, we call the scheme (2.1) conservative scheme.  
We further define the approximating values of fluxes. For 1 1i I i k≤ ≤ − , ≠ , approximate 1 2

n
iQ + /  by  

 1 2 1 2
n n n
i i iq uα+ / + / += − Δ .  (2.4) 

Suppose U  and Q  are smooth enough, it’s easily get from the Taylor expansion that (2.1) and (2.4) have the 
second-order truncation error 2( )O h t+ Δ  if 2tΔ / h  is any constant. To define 1 2

n
kq + /  with the second-order 

truncation error, from (1.4) and (1.5), we have  


