ISSN 1746-7659, England, UK
Journal of Information and Computing Science
Vol. 9, No. 2, 2014, pp. 083-090

. ACADEMIC

A \orid Academic Union
>

FP-growth Tree for large and Dynamic Data Set and Improve
Efficiency

Rahul Moriwal

Department of computer science & Engineering
Indore Institute of Science & Technology Indore
rmoriwal@gmail.com
(Received may08, 2013, accepted october 23, 2013)

Abstract. FP-growth method is an efficient algorithm to mine frequent patterns, in spite of long or short
frequent patterns. By using compact tree structure and partitioning-based, divide-and-conquer searching
method, it reduces the search costs substantially. But just as the analysis in Algorithm, in the process of FP-
tree construction, it is a strict serial computing process. Algorithm performance is related to the database size,
the sum of frequent patterns in the database: . this is a serious bottleneck. People may think using
distributed parallel computation technique or multi-CPU to solve this problem. But these methods apparently
increase the costs for exchanging and combining control information, and the algorithm complexity is also
greatly increased, cannot solve this problem efficiently. Even if adopting multi-CPU technique, raising the
requirement of hardware, the performance improvement is still limited.

Keywords: Divide & Conquer, partitioning-based, parallel projection, data mining, Al

1. Introduction

(1). we can create a temp database for storing all the frequent items ordered by the list of frequent items,
Lwe call this temp database as Projection Database (or PDB for short), which is used for projecting, reduce
the expensive costs of individual node computation.

(2). we can project the PDB, two columns at a time.1 One column (called current column) is used to
computer the count of each different item, the other (previous) column is used to distinguish the node’s
parent node of current column. we can insert one level of nodes into the tree at a time, not compute frequent
items one by one. Then, the algorithm performance is only related to the depth of tree, namely the number of
frequent items of the longest transaction in the database 7,

(3). because we only project two columns at a time, only save the information of the current nodes and
their parent nodes, if there exist the case as follows: the current nodes’ parent nodes are identical, but their
parent nodes’ parent nodes are different, we couldn’t judge how to deal with it. If we add their count
regarding them as the same node,

2. DEFINITION AND BASE FORMULATION

conditional-pattern base (a “sub-database” which consists of the set of frequent items occurring with the
suffix pattern), constructs its (conditional) FP-tree, and performs mining recursively with such a tree. The
pattern growth is achieved via concatenation of the suffix pattern with the new ones generated from a
conditional FP-tree. Since the frequent item set in any transaction is always encoded in the corresponding
path of the frequent-pattern trees, pattern growth ensures the completeness of the result. our method is not
Apriori-like restricted generation-and-test but restricted test only. The major operations of mining are count
accumulation and prefix path count adjustment, which are usually much less costly than candidate generation
and pattern matching operations performed in most Apriori-like algorithms. the search technique employed
in mining is a partitioning-based, divide-andconquer method rather than Apriori-like level-wise generation
of the combinations of frequent itemsets. This dramatically reduces the size of conditional-pattern base
generated at the subsequent level of search as well as the size of its corresponding conditional FP-tree.

Published by World Academic Press, World Academic Union

84 Rahul Moriwal : FP-growth Tree for large and Dynamic Data Set and Improve Efficiency

A performance study has been conducted to compare the performance of FP-growth with two representative
frequent-pattern mining methods, Apriori (Agrawal and Srikant, 1994) and Tree Projection (Agarwal et al.,
2001), FP-growth outperforms the Tree Projection algorithm. our Ftree-based mining method has been
implemented in the DBMiner system and tested in large transaction databases in industrial applications.
Although FP-growth was first proposed briefly in Han et al. (2000), this paper makes additional progress as
follows.
— The properties of FP-tree are thoroughly studied. we point out the fact that, although it is often compact,
FP-tree may not always be minima.
— Some optimizations are proposed to speed up FP-growth, for technique to handle single path FP-tree has
been further developed for performance improvements.
— A database projection method has been developed to cope with the situation when an FP-tree cannot be
held in main memory—the case that may happen in a very large database.

— Extensive experimental results have been reported. We examine the size of FP-tree as well as the
turning point of FP-growth on data projection to building FP-tree.

3. FREQUENT-PATTERN TREE: DESIGN AND CONSTRUCTION

Let | ={al, a2, . ..am} be a set of items, and a transaction database DB=T1, T2, ..., Tn, where Ti (i =
[1...n]) is a transaction which contains a set of items in | . The supportl (or occurrence frequency) of a
pattern A, where A is a set of items, is the number of transactions containing A in DB. A pattern A is frequent
if A’s support is no less than a predefined minimum support threshold, & .

A compact data structure can be designed based on the following observations:

(1). Since only the frequent items will play a role in the frequent-pattern mining, it is necessary to perform
one scan of transaction database DB to identify the set of frequent items (with frequency count obtained as a
by-product).

(2). If the set of frequent items of each transaction can be stored in some compact structure, it may be
possible to avoid repeatedly scanning the original transaction database.

(3). If multiple transactions share a set of frequent items, it may be possible to merge the shared sets with the
number of occurrences registered as count.

database

(1). If two transactions share a common prefix, according to some sorted order of frequent items, the shared
parts can be merged using one prefix structure as long as the count is registered properly. If the frequent
items are sorted in their frequency descending order, there are better chances that more prefix strings can be
shared. one may construct a frequent-pattern tree as follows. a scan of DB derives a list of frequent items,
(f:4), (c:4), (a:3), (b:3), (M:3), (p:3)(the number after ““:” indicates the support), in which items are ordered
in frequency descending order. the root of a tree is created and labeled with “null”.

(1). The scan of the first transaction leads to the construction of the first branch of the tree:(f :1), (c:1), (a:1),
(m:1),(p:1). (2). For the second transaction, since its (ordered) frequent item list f, c, a, b,m shares a common
prefix f, ¢, awith the existing path f, ¢, a,m, p the count of each node along the prefix is incremented by 1,
and one new node (b:1) is created and linked as a child of (a:2) and another new node (m:1) is created and
linked as the child of (b:1). (3). For the third transaction, since its frequent item list f, bhares only the node f
with the f prefix subtree, f ’s count is incremented by 1, and a new node (b:1) is created and linked as a child
of (f :3).(4). The scan of the fourth transaction leads to the construction of the second branch of the tree,
(c:1), (b:1), (p:1). (5). For the last transaction, since its frequent item list f, ¢, a,m, pis identical to the first one,
the path is shared with the count of each node along the path incremented by 1.

Definition (FP-tree). A frequent-pattern tree (or FP- tree in short) is a tree structure

(1). Tt consists of one root labeled as “null”, a set of item-prefix sub trees as the children of the root and a
frequent-item-header table.

(2). Each node in the item-prefix sub tree consists of three fields: item-name, count, and node-link, where
item-name registers which item this node represents, count registers the number of transactions represented
by the portion of the path reaching this node,

JIC email for contribution: editor@jic.org.uk

