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Abstract. In this paper, we will use the variational iteration method (VIM) for the determination of 

unknown coefficients in an inverse heat conduction problem (IHCP). The VIM, which is a modified general 

Lagrange multiplier method, has been attracted a lot of attention of the researchers for solving different 

problems. Applying this technique, a rapid convergent sequence to the exact solution is produced. Moreover, 

this method does not require any discretization, linearization or small perturbation. Therefore it can be 

considered as an efficient method to solve the various kinds of problems. To show the strength of the method, 

some examples are given. 
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1. Introduction  

Inverse heat conduction problems (IHCPs) arise in many important scientific and technological fields. 

Hence analysis, design implementation and testing of inverse algorithms are also great scientific and 

technological interest [2]. Till now, various methods have been developed for the analysis of IHCPs [1-13]. 

When the radiation of heat from a solid is considered to pass through a nonparticipating media, the heat flux 

is often taken to be proportional to the difference of the boundary temperature of the solid to the fourth 

power and the temperature of the surrounding to the fourth power [14]. When the thermo-physical properties 

are independent of position and temperature, the heat transfer problem in this situation may be derived, in the 

dimensional space and time, as [1]: 

                                               ( , ) ( , ); 0 1, 0 ,t xxu x t u x t x t T                                  (1) 

                                                            ( ,0) ( ); 0 1,u x r x x                                                     (2) 

                                                 (0, ) ( (0, )) ( ); 0 ,xu t u t t t T                                               (3) 

                                                 (1, ) ( (1, )) ( ); 0 ,xu t u t t t T                                                  (4) 

 

with overspecified conditions: 

                                             ( , ) ( ); 0 1, 1,2, 0 ,i i iu x t g t x i t T                                   (5)  

where T is the final time, ( )r x is the initial temperature of solid, ; 1,2ix i   are the locations of interior 

sensors recording the temperature measurements ( ); 1,2ig t i   and  ( (0, )) ( )u t t   and ( (1, )) ( )u t t   

represent a general radiation law. In this context the functions ( )t  and ( )t  are known heat fluxes arriving 

to the surfaces at 0x   and 1x  , respectively, and the nonlinear terms ( (0, ))u t  and ( (1, ))u t  are 

unknown functions to be determined. The problem given by equations (1) and (2) is called the characteristic 

Chauchy problem and the problem given by equations (1), (3), (4) and (5) is called the non-characteristic 

Chauchy problem. The unique solvability of the problem (1)-(5) can be found in [1]. This problem has been 

solved by the finite difference method in [1]. 

In this work, we apply the VIM to construct a solution to the problem (1)-(5). The VIM was first suggested 

by Ji-Huan He [15-22]. This method is based on the use of Lagrange multipliers for the identification of 

optimal values of parameters in a functional. This method construct a rapidly convergent sequence to the 

exact solution. Moreover, VIM does not require any discretization, linearization or small perturbation. This 

method is effectively, convenience and accurate. Thus, it has been extensively applied to various kinds of 

linear and nonlinear problems [23-27]. 

The organization of the paper is as follows: In Section 2, analysis and application of VIM are presented. 

In Section 3, some examples are given. Section 4 ends this paper with a conclusion. 

2. Analysis and application of VIM  

Consider the general differential equation: 
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( ),Lu Nu g t   

where L  and N are linear and nonlinear operators, respectively, and ( )g t is an inhomogeneous term. 

According to VIM, we construct a correction functional as follows: 

1
0

( ) ( ) ( , )( ( ) ( ) ( )) ,
t

n n n nu t u t t s Lu s Nu s g s ds      

where   is a Lagrange multiplier, which can be identified optimally via the variational theory, nu  is a 

restricted variation, i.e. 0nu   [15, 24]. Now, we need to determine the Lagrangian multiplier  . Then by 

using the determined Lagrangian multiplier and an initial approximation 0 ( )u t , the successive 

approximations 1( ), 0,nu t n   of the solutions ( )u t  will be readily obtained. The convergence of the method 

is systematically discussed by Tatari and Dehghan [28]. 

Now, for equation (1), the correction functional can be expressed as follows: 

1
0

( , ) ( , ) ( , )( ( , ) ( , )) ,
s xx

t

n n n nu x t u x t t s u x s u x t ds     

where  nu  is a restricted variation and   is the Lagrange multiplier. 

To find the optimal value of  , we have: 

1
0

( , ) ( , ) ( , )( ( , ) ( , )) 0,
s xx

t

n n n nu x t u x t t s u x s u x t ds         

After some calculation, we obtain the following stationary conditions: 

( , ) 0,t s   

1 ( , ) | 0.s tt s    

So, we have:  

( , ) 1.t s    

Therefore, we obtain the following iteration formula: 

                                                       1
0

( , ) ( , ) ( ( , ) ( , )) .
s xx

t

n n n nu x t u x t u x s u x t ds                           (6) 

Now, taking 0( , ) ( ,0)u x t u x  as an initial value, we can find the n -order approximate solution ( , )nu x t of 

(1). 

Consequently, for approximating   and  , using (6), we can find the solution of (3) and (4) as a 
convergent sequences, respectively. 

  

3.    Test examples   

In this Section, to justify the accuracy of the method, some examples are given. These examples are chosen 

from [1] to demonstrate that the present method is remarkably effective. All the computations are performed 

on the PC (pentium(R) 4 CPU 3.20 GHz). 

Example 1. Consider the following problem: 

                                                         ( , ) ( , ); 0 1, 0 1,t xxu x t u x t x t                                  (7) 

                                                                      2( ,0) ; 0 1,u x x x                                                      (8) 

                                                      2(0, ) ( (0, )) sin(4 1); 0 1,xu t u t t t                                            (9) 

                                           2(1, ) ( (1, )) 2 cos(1 2 (1 2 ) ); 0 1,xu t u t t t t                             (10) 

with two overspecified conditions: 

                                                          (0.4, ) 0.16 2 , (0.6, ) 0.36 2 .u t t u t t                                         (11) 

The exact solution of this problem is in [1].  

To solve this problem, we use the equation (6). Starting with 2
0u x . Substituting 0u  into equation (6), we 

compute: 

                                                                             2
1( , ) 2 ,u x t x t                                                         (12) 

which is the exact solution. Therefore, from (9) and (12), we obtain: 
2

1( (0, )) sin(4 1),u t t    


