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Abstract. In this paper, we propose a filter method to solve the linear complementarity problem(LCP). By 

using the Fisher-Burmeister function, we convert the LCP to an equivalent optimization problem with linear 

equality constraints. A filter approach is employed to tackle the optimization problem and the proposed 

mechanism for accepting the trial step is obtained by a nonmonotone filter technique. Under some conditions, 

we establish the global convergence of the algorithm. 
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1. Introduction  

In this paper, we consider the following linear complementarity problem (LCP) 
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where n n nM R ,x, y R  and 0( 0)x y  means that 0( 0) 1,2, ,i ix y i n   . In this paper, we 

assume that the solution set of (1)  is nonempty, and let X denote the solution set of (1) . For 

convenience, we use ( , ) .T T Tw x y  

 LCP problem, arising in transportation, economy, engineering and many fields in the society, 

see [1,2] for survey. Optimization reformulation method is one of the most popular method for 

solving the LCP, one is the equivalent unconstrained optimization reformulation[3], and  the other 

the equivalent constrained optimization reformulation[4].  In the last few years, a great deal of 

numerical methods had been proposed to deal with the responding optimization reformulation 

problems, such as nonsmooth Newton methods(see[4,5,6,7,8]), interior method(see[9])and 

smoothing method (see[10,11,12,13]and[14]for survey). 

 This paper will focus on the equivalent constrained optimization reformulation and the filter 

method to deal with linear equality constrained optimization reformulation of the LCP. The filter 

methods  was proposed first by Fletcher and Leyffer[15], in which the use of a penalty function, a 

common feature of the large majority of the algorithms for constrained optimization, is replaced by 

the technique so-called "filter", and filter method has been actually applied in many optimization 

techniques, for instance, the pattern search method [16], the SLP method [17], the interior point 

method [18], the bundle approaches [19], the system of nonlinear equations and nonlinear least 

squares [20], multidimensional filter method[21], and so on.   

In fact, filter method exhibits a certain degree of nonmonotonicity. The idea of nonmonotone 

technique can be traced back to Grippo et al.[22] in 1986. Due to its excellent numerical exhibition, 

over the last decades, the nonmonotone technique has been used in trust region method to deal with 

unconstrained and constrained optimization problems. Motivated by above ideas and methods, in 

this paper we use a filter algorithm that combines the nonmonotone technique for solving LCP. 

The rest of paper is organized as follows: In the section 2, we state the knowledge summary 

and algorithm model. In the section 3 we analyze the convergence property of the algorithm.  In the 

section 4, some discussions and remarks are given. 

2. Knowledge  summary and algorithm Model 
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It has been well known that by means of a suitable function: 2R R   the system                                                                                                                            

                                        0, 0, 0,a b ab                                                                                  (2)  

can be transformed into an equivalent nonlinear equation 

                                                  ( , ) 0,a b                                                                                    (3) 

       In this situation, function  is called as NCP-function. Then (1) can be reformulated as the 

following equivalent nonlinear equation system: 
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 A lot of methods have been proposed to solve (4) or (5) to minimize their natural residual 
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(6) 

In general, (5) is nonsmooth and nonlinear, hence it is not easy to solve. However, in (5), the 

first n components are nonsmooth and nonlinear which is difficult to solve, contrarily to the first 

part, the last n components are easy to handle. Therefore, it is reasonable to handle the first part 

which consists of the n nonsmooth components and the second part which consists of the n linear 

equations separately. Based on this idea, we transform further (5) into the following equivalent 

minimization problem.  
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Throughout the paper, we shall use the famous Fisher-Burmeister function defined by 

2 2( , ) , ( , ),a b a b a b a b R       which has many promised properties and attracted the 

attention of many researchers. 

 

As mentioned in the former, we exploit the famous Fisher-Burmeister function. Then (1) can be 

converted to the equivalent nonlinear equation system (5).                                        
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                    (7) 

Since the algorithm we proposed in this paper converges to KKT point of (7). The first 

question needed to be answered is what condition guarantee that a KKT point of (1) is global 

solution of (7). Then, we easily know w solves (1) if and only if w solves (7). We have the 

following properties.   

Lemma 
 23

2.1   Function has the following properties: 

(1) ( , ) 0 0, 0, 0a b a b ab      ;  


