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Abstract. In this paper, a collocation method based on the Bessel polynomials are used for the solution of 

nonlinear Fredholm-Volterra-Hammerstein integral equations (FVHIEs). This method transforms the 

nonlinear (FVHIEs) in to matrix equations with the help of Bessel polynomials of the first kind and 

collocation points. The matrix equations corresponds to a system of nonlinear algebraic equations with the 

unknown Bessel coefficients. Present results demonstrate proposed method in comparison with other 

methods is more accurate, efficiency and reliability. 
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1. Introduction  

In recent years, many different method have estimated the solution of integral equations. Also, for 

solution of these equations many analytical and numerical methods have been exited but most of the time 

numerical methods have been used to solve these equations. Ordokhani [1] has used Walsh-hybrid functions 

with Newton-Cotes nodes for solving of Fredholm-Hemmerstein integral equations. Authors [2] have solved 

nonlinear integral equations of Hammerstein type by Chebyshev polynomials. Maleknejad in [3], has used 

computational method based on Bernstein operational matrics for nonlinear Volterra-Fredholm-Hammerstein 

integral equations. Babolian and Shahsavaran in [4] have solved the nonlinear Fredholm integral equations of 

the second kind using Haar wavelets. Yousefi and Razzaghi in [5] have solved nonlinear Volterra-Fredholm 

integral equations by Legendre wavelers method. Yuzbasi et al. [6], Yuzbasi and Sezer [7], Yuzbasi et al. [8] 

have worked on the Bessel matrix and collocation methods for the numerical solutions of the neutral delay 

differential equations, the pantograph equations and the Lane-Emden differential equations. Also, readers 

who are interested to learn more about this topic could refer to [10 - 15]. 

Recently, Yazbasi in [16] used Bessel polynomials and Bessel collocation method [8] for solving high-order 

linear Fredholm-Volterra integro-differential equations. In this article, by Bessel polynomials and Bessel 

collocation method estimate solution of nonlinear (FVHIEs) to form:  
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where y(x) is an unknown function, the known functions ),(xg ),(1 txk , ),(2 txk , ))(,(1 tyt and  

)).(,(2 tyt  Also, 1 and 2  are real or complex constants. 

                                              

2. Bessel polynomial of first kind 

The m-th degree truncated Bessel polynomial of first kind are defined by [16] 
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where N is chosen positive integer so that N m   and 0,1, , .m N  We are transform the Bessel 

polynomials of first kind to N-th degree Taylor basis functions. In matrix form as 
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If N is odd 
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If N is even 
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3.    Fundamental relations 

3.1. Matrix relation for the Fredholm integral part 

In this section we can approximate the kernel function ),(1 txk  by the truncated Maclaurin series and 

truncated Bessel series [16], respectively 
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