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Abstract. In this paper, we present a method for numerical solution of linear Volterra integro - differential 
equations with boundary conditions. First, we obtain variational form of the problem, and then, finite element 
method and basis functions will be used. Also, the error analysis of the method is considered. Furthermore, 
the efficiency of the proposed method will be considered through numerical examples. 
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1. Introduction  
    Many authors have studied finite element methods for integral equations. See, Atkinson[2] , Ikebe [7], 
Nedelec [12], Sloan [16], and Wendland [19]. Adaptive finite element methods for integral equations have 
been considered more recently. See,[13,19]. 
     Integro-differential equations have been discussed in many applied fields, such as biological, physical and 
engineering problems. They are usually difficult to solve analytically, so it is required to obtain an efficient 
approximate solution. There are several methods for solving integro-differential equations, Yanik and 
Fairweather in [20], used finite element methods for solving integro-differential equation of parabolic type 
and obtained an 1 2( ( ) )rO h t+ + Δ  order estimate for 2L  norm of the error. 
     In [9], Leroux and Thomee analyzed a Galerkin approximation in space with the Euler method in time for 
a semilinear integro-differential equations of parabolic type with non smooth data. The stability of Ritz-
Volterra projections and error estimates for finite element methods for a class of integro-differential 
equations of  parabolic type is studied by Lin and Zhang [10]. Sloan and Thomée, used time discretization of 
an integro-differential equation of parabolic type [17]. Brunner applied a collocation-type method to 
Volterra-Hammerstein integral equation as well as integro-differential equations, [3]. Volk used projection 
method to solve linear integro-differential equations, [18]. High order nonlinear Volterra Fredholm integro-
differential equations has been solved in [11] by using Taylor polynomial. Sabri-Nadjafi [15] proposed He's 
variational iteration method for two systems of Volterra integro-differential equations. 
     In this paper, we use Lagrange polynomials with Finite element method to obtain an approximate solution 
of the problem. To illustrate the basic approach, we consider the following volterra integro-differential 
equation 

( ) ( ) ( ) ( ) = ( ) ( , ) ( ) ( ) = 0, ( ) = 0, = [ , ]
x

a
u b x u x c x u x f x K x t u t dtu a u b a b′′ ′− + + + Ω∫  (1)

 
     We assume that ( , )K x t  and ( )f x  are continuous functions respect to their arguments, and ( )b x  and 

( )c x  are nonnegative functions and belong to 1( )C Ω . First, for using finite element method, by suitable 
linear transform, we convert the essential boundary condition to homogeneous one, and then we define 

                                      
1 1
0= ( ) = { ( ), ( ) = ( ) = 0}V H v H v a v bΩ ∈ Ω  

where V  is a Sobolev space together with following norm:  

                                      
2 2 2

2 2( ) ( )
|| || =|| || || || .V L L
u u u

Ω Ω
′+

 
     For obtaining varational form, we let :B V V R× →  and :L V R→  be bilinear form and linear 
functional, respectively. 

The varational form of the problem is given as follows  
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                                        ( , ) = ( ), ,B u v L v v V∀ ∈  (2) 
 where  

 .

( , ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( , ) ( ) ) ( ) = ( ) ( )
b

a

B u v u x v x dx b x u x v x dx c x u x v x dx

v x K x t u t dt dxL v f x v x dx

Ω Ω Ω

Ω Ω

′ ′ ′+ + −∫ ∫ ∫
∫ ∫ ∫ . (3) 

 where ( )v x V∈  is an arbitary function.  

Lemma 1.1   Let B  be bilinear form defined by (3). If 1 2( )M c x M≤ ≤  and 1 2( )P b x P≤ ≤  , then 

B  is continuous.  
Proof. For B , we can write,  

| ( , ) |=| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( , ) ( ) ) |
x

a
B u v u x v x dx b x u x v x dx c x u x v x dx v x K x t u t dt dx

Ω Ω Ω Ω
′ ′ ′+ + −∫ ∫ ∫ ∫ ∫

 
 Using the Cauchy-Schwarz inequality and Sobolev norm, we have  

 

1 1 2 1 1 2 1 1 1 1

2 2 1 1 1 1( ) ( ) ( ) ( )

| ( , ) | || || || || || || || || || || || || || || || || =

(1 ) || || || || = || || || ||
H H H H H H H H

H H H H

B u v u v P u v M u v K R u v

P M K R u v C u v
Ω Ω Ω Ω

≤ + + +

+ + +
 

 
which | ( , ) |maxa x b

a t x
K K x t≤ ≤

≤ ≤
= , 2

2 ( )
=||1||

L
R

Ω
 and 2 2= 1C P M K R+ + + . So B  is continous.         

     In addition of the hypothesis of lemma 1.1, suppose 20 ( )b x T′≤ ≤ . Now we consider the V -ellipticity of 

B. For this purpose we write 

 
2 2

1
1( ) ( ) ( ) ( ) ( ) ( ) || || ,

1 H
v x v x dx c x v x v x dx v x dx v

cΩ Ω Ω
′ ′ ′+ ≥ ≥

+∫ ∫ ∫
 (4) 

 and  
2 2 22 2

1
1( ) ( ) ( ) = ( )( ( )) ( ( )) || || ,

2 2 2
b b

Ha a

T Tb x v x v x dx b x v x dx v x dx v
Ω

− −−′ ′ ≥ ≥∫ ∫ ∫
 (5) 

 also  
   

2 2
2 1( )( ( , ) ( ) ) | ( )( ( , ) ( ) ) | || || || || .

x x

L Ha a
v x K x t v t dt dx v x K x t v t dt dx K R v K R v

Ω Ω
− ≥ − ≥ − ≥ −∫ ∫ ∫ ∫  (6) 
 By ((4)), ((5)), ((6)), we have  

                 
22

1
1( , ) ( ) || || ,

1 2 H

TB v v K R v
c

≥ − −
+  (7) 

 or  

                 
2

1( , ) || || ,
H

B v v vα≥
 (8) 

 where 21= ( )
1 2

T K R
c

α − −
+

, c  is poincare's constant. So, the following lemma can be expressed.  

Lemma 1.2  If > 0α , B is V-elliptic.  
By using Lax-Milgram theorem and lemmas 1.1, 1.2, the problem ((1)) has a unique solution. 

 

2. Finite element method 


