

Boundary and Region based Moments Analysis for Image Pattern Recognition

Dr. U Ravi Babu ¹, Dr Md Mastan ² and Dr Y Venkateswarlu ³

¹ Professor, Department of CSE. MREC, Secendrabad, TS, India
 ² Professor and HOD, Department of CSE. MREC, Secendrabad, TS, India
 ³Professor and HOD, Department of CSE. GIET Engg College, RJY, AP, India
 (Received October 09, 2014, accepted December 28, 2014)

Abstract. In a number of pattern recognition application, moments have been used to recognize image patterns. The recognition process involves effective shape representation method. So, the present paper analyzes the recognition rate in two different shape representation methods called external and internal representation. With the proper shape representation of the given image pattern, the present paper has computed 7 boundary (external) based and 10 region (internal) based Hu moments. The experimental results on five different pattern image groups (Brick, Circle, Curve, Line and Zigzag) are precisely recognized by both boundary based and region based moments of order 1 and 10 respectively.

Keywords: Skeleton, Hu Moment, recognition

1. Introduction

Image retrieval is becoming a more important problem with the rapid increase of media information. Users want to provide query images and obtain a set of similar images. In content-based image retrieval systems, several low-level image features, such as color, texture, shape or the combination of these features, describe images. Shape is an important low-level image feature.

There are generally two types of shape descriptors: external representation based shape descriptors and internal representation based shape descriptors. External representation based shape descriptors use only the boundary of the objects shape, while the internal representation based shape descriptors use the internal region details in addition to the boundary [1].

Moments due to its ability to represent global features have found extensive applications in the field of image processing [2]–[10]. In 1961, Hu [2] introduced moment invariants. Based on the theory of algebraic invariants he derived a set of moment invariants, which are position, size and orientation independent. Dudani et al. [4] used Hu's moment invariants up to the third order in the recognition of images of aircraft. The same invariants were also used for recognition of ships [5]. Markandey et al. [10] developed techniques for robot sensing based on high dimensional moment invariants and tensors. Gang Xu et al. [11] has proposed a new image recognition algorithm by using region based shape representation. They proposed new region based moments based on skeletons. Zhihu Huang et al. [12] has performed an analysis of boundary based Hu's Moment invariants on image scaling and rotation. Hongbo Mu [13] used boundary and region based Hu moments for recognizing different types of defects in wood pattern images. Cecila Di Ruberto et al. [14] has combined morphological image features with the moment invariants for classification.

The organization of the paper is as follows. Section 2 deals with the methodology of boundary and region based moment computation, the results and discussions are presented in section 3 and last section deals with conclusions.

2. Methodology

Shape representation is an important issue in image processing and computer vision, because it provides the foundation for developing algorithms for shape-related processing such as image coding, shape matching and object/pattern recognition, content-based video processing and image data retrieval.

The present paper uses two types of shape representation namely external representation and internal representation. In external representation, the shape of the given object is represented by the boundary while in the internal representation, the entire region is represented by skeleton.

From the second- and third-order normalized central moments, a set of seven invariant moments, which are invariant to translation, scale change and rotation, has been derived by Hu as given in Equations (1)-(7). The present paper has computed the 7 Hu moments on the boundary of the given image pattern.

$$BM_1 = \eta_{20} + \eta_{02} \tag{1}$$

$$BM_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \tag{2}$$

$$BM_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$
(3)

$$BM_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2$$
(4)

$$BM_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}] + 3(\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$
(5)

$$BM_6 = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{11})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{30} + \eta_{11})(\eta_{21} + \eta_{03})$$
(6)

$$BM_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} + \eta_{03})^{2}]$$

$$+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$(7)$$

Where the normalized central moment of order (p+q) is given in the Equation (8)

$$\eta_{pq} = \frac{\mu_{pq}}{\frac{p+q+2}{\mu_{00}^2}} \tag{8}$$

The central moment of order (p+q) is given by the Equations (9)-(11).

$$\mu_{pq} = \int_{x,y \in c} \int (x - \bar{x})^p (y - \bar{y})^q f(x,y) dx dy$$
(9)

$$\frac{1}{x} = \frac{m_{10}}{m_{00}} = \frac{\iint\limits_{x,y \in c} xf(x,y)dxdy}{\iint\limits_{x,y \in c} f(x,y)dxdy}$$
(10)

$$\frac{1}{y} = \frac{m_{01}}{m_{00}} = \frac{\iint_{x,y \in c} yf(x,y)dxdy}{\iint_{x,y \in c} f(x,y)dxdy}$$
(11)

The 10 extended Hu moments given in the Equations (12)-(21) are computed on the skeleton of the given image.

$$RM1 = \frac{\sqrt{BM2}}{BM1} \tag{12}$$