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Abstract. The problem of controlling chaotic system is studied by using back stepping design method. This
technique is applied to achieve chaos control for each state of the nonlinear dynamical system. Based on
Lyapunov stability theory, control laws are derived. The same technique is used to enable the stabilization of
the chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic
way. Numerical simulations are shown to verify the theoretical results..
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1. Introduction

Chaotic systems are characterized by their extreme sensitivity to small perturbations in their initial
conditions [1-2]. The inherent feature, known as the “butterfly effect”, is often troublesome or even
unwanted in many cases of practical importance. Chaos controlling is one of the topics in the field of
nonlinear science [3-5]. Chaos controlling concludes two following categories: one is suppressing chaotic
dynamical behavior and another is generating or enhancing chaos in nonlinear systems. Chaos is generally
believed to be harmful, so research has mainly focused on determining ways to remove or lessen the chaos
within systems. There are many techniques and methods have been proposed to achieve chaos control, such
as adaptive control [6],0GY method [7], feedback control methods [8], backstepping design technique [9],
impulsive control [10], etc.

In this work, by employing back stepping method, chaos in hyperchaotic delay Lorenz system is
controlled based on Lyapunov stability theory. At the same time the same method is used to enable
stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory. Numerical
simulations are shown to verify the results.
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Figure 1. 2D overview hyper chaotic attractor of the system (1) when 7 =1(2D overview).

2. Hyper chaotic Lorenz system with time delay
In this paper the considered hyperchaotic Lorenz system with a time delay can be described as
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x=aly—x)+w(—1),
y=cx—Yy—XZ
Z =xy — bz,

W=-yz—w.

M)

where T > 0 is the time delay.

As the dynamical systems given by DDEs have an infinite dimensional state space, usually the attractors
of the solutions are high dimensional. The time delay hyper chaotic Lorenz system may exhibit more
complicated complex behaviors[11]. When a = 10, b = 8/3, ¢ = 28 and the time delay 7 is chosen as 1,
system (1) has two positive Lyapunov exponents, i.e., 4; = 0.4513, A, = 0.1394, which exhibits hyper
chaotic behavior, the hyper chaotic attractors of system (1) are shown in Figure 1 (2D overview).

3. Controlling the time delay hyper chaotic Lorenz system via back stepping control

In the followings, we will explore a single controller to control the chaos of the system via backstepping
method.
Theorem 1 If u; = —ay — w(t — 1) is added to the first equation of system (1), the states of the system (2)
will be stabilized at the origin point, where the controlled system can be written as
x=aly—x)+w(t—1)+u,

y=cx—y—Xxz

Z =xy — bz, (2)
W=-yz—w.
Proof: Starting from the fourth equation, a stabilizing function z(w), has to be designed for the virtual
control x in order to make the derivative of
v, = %Wz,
and
Vi =w(—yz—w)
= —w? + z(w),
be negative definite. Assume that z(w)=0, and define an error variable
z=z-z(w), (3)
we can obtained the (w, 2)-subsystem
W=—-yZ—w
{z'_ =xy—bz’ ()
We can construct a Lyapunov function as follows:
V=V +522
Calculating the time derivative of V, along system (4), we have
V, =V, + 2z
= —w? + Z(xy — b2)
=—w?—-bz%+y(w,2). (5)
When we choose y(w, 2) = 0, V, is negative definite. Define an error variable as
y=y—-yw,2), (6)
the (w, z, ¥)-subsystem can be obtained
wW=—-yZ—w,
Z=xy — bz, (7)
y=cx—y—xZ.

The Lyapunov function can be constructed as
Vs = VotV +552
The time derivative of V; along the (w, z, y)-subsystem can be obtained
Vs =V, + V3 + 7y
=V, +V,+y(cx—y—x2)
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