

Hybrid synchronization of the hyperchaotic 4D systems via impulsive coupling

Zhaobing Lin, Yan Zhou*, Juanjuan Huang School of Mathematical Sciences, Yancheng Teachers University, Yancheng, 224002, China (Received February 01, 2015, accepted June 09, 2015)

Abstract. Hybrid synchronization of the hyperchaotic 4D systems with different initial conditions is investigated via impulsive coupling. Based on the Lyapunov stability theory, sufficient conditions are given to get the hybrid synchronization by constructing a Lyapunov function. It is proved that some partial state variables of two hyperchatic systems are anti-synchronized, while other state variables are complete synchronized, when impulsive coupling controllers are imposed on the response system. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.

Keywords: hybrid synchronization; hyperchaotic system; impulsive coupling

1. Introduction

Starting from the pioneering work of Pecora and Carroll [1], synchronization of chaos has attracted much attention [2-3] due to its many applications in physics, secure communication, chemical reactor, control theory, telecommunications, biological networks, artificial neural networks, etc. Several different types of synchronization of coupled chaotic oscillators have been described theoretically and observed experimentally, such as complete synchronization[4], anti-synchronization[5], phase synchronization[6], generalized synchronization[7], partially synchronization[8], time-scale synchronization[9], projective synchronization[10], Q-S synchronization[11], and even cluster synchronization [12], etc. Many different methods have been proposed to study synchronization such as active control, feedback control, observer control[13], etc.

As far as we know, in drive-response synchronization, the research results reported on the same synchronization regime of the response and drive systems. Recently, a class of new synchronization phenomenon, hybrid synchronization in chaotic systems had been investigated intensively [14-16]. In hybrid synchronization scheme, one part of the system is anti-synchronized and the other is completely synchronized so that complete synchronization (CS) and anti-synchronization (AS) co-exist in the system. In this paper, the coexistence of CS and AS between two identical hyperchaotic systems will be invenstigated via impulsive coupling controller. The rest of this paper is organized as follows. Section 2 describes the Hyperchaotic 4D system. In Section 3, based on the Lyapunov stability theory, the Hybrid synchronization of the hyperchaotic 4D systems via impulsive coupling is presented and the stability of the error dynamic system is derived. In Section 4, some numerical illustrative examples are provided to illustrate the effectiveness of the proposed scheme. Finally, conclusions are presented in Section 5.

2. System description of hyperchaotic 4D system

The considered hyperchaotic 4D system is described as

$$\begin{cases}
\dot{x}_1 = a(x_2 - x_1), \\
\dot{x}_2 = x_1 + bx_2 - x_1x_3 + x_4, \\
\dot{x}_3 = x_1^2 - cx_3, \\
\dot{x}_4 = -dx_1.
\end{cases}$$
(1)

where x_i (i = 1, 2, 3, 4) are state variables. a, b, c and d are real constants. the system (1) is the hyperchaotic system constructed by Cai et al.[39]. Therefore, in the following sections, we will investigate the coexistence of antiphase and complete synchronization of the hyperchaotic 4D systems via impulsive coupling controller.

3. Hybrid synchronization of the hyperchaotic 4D system via unidirectional impulsive coupling

For convenience, the drive hyperchaotic 4D system is chosen as (1) and the response system is given as the following:

$$\begin{cases} \dot{y}_{1} = a(y_{2} - y_{1}), & t \neq t_{k}, \\ \dot{y}_{2} = y_{1} + by_{2} - y_{1}y_{3} + y_{4}, & t \neq t_{k}, \\ \dot{y}_{3} = y_{1}^{2} - cy_{3}, & t \neq t_{k}, \\ \dot{y}_{4} = -dy_{1}, & t \neq t_{k}. \end{cases}$$
(2a)

$$y_i(t_{\nu}^+) - y_i(t_{\nu}^-) = \alpha_i(y_i(t_{\nu}^-) - x_i(t_{\nu}^-)), i = 1, 2, 3, 4, t = t_{\nu},$$
 (2b)

where $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)^T$ are positive constant vector, $0 \le t_0 < t_1 < t_2 \cdots < t_k < t_{k+1} < \cdots$ and $t_k \to \infty$ as $k \to \infty$.

The goal is to find some conditions on the control gains α_i , and the impulse distances $t_{k+1} - t_k = \zeta_k$, so that the state variables y_1 , y_2 and y_4 in response system are anti-synchronized to x_1 , x_2 and x_4 in drive system, respectively, while the third state variable y_3 in response system is complete-synchronized to x_3 in drive system. For this purpose, let

$$e_1 = y_1 + x_1, \ e_2 = y_2 + x_2, \ e_3 = y_3 - x_3, \ e_4 = y_4 + x_4.$$
 (3)

It follows from (1) and (2) that the errors system (3) are governed by the following dynamical system:

$$\begin{cases} \dot{e}_{1} = a(e_{2} - e_{1}), \ t \neq t_{k}, \\ \dot{e}_{2} = e_{1} + be_{2} - e_{1}y_{3} + x_{1}e_{3} + e_{4}, t \neq t_{k}, \\ \dot{e}_{3} = (y_{1} - x_{1})e_{1} - ce_{3}, t \neq t_{k}, \\ \dot{e}_{4} = -de_{1}, t \neq t_{k}. \end{cases}$$

$$(4a)$$

$$e_i(t_k^+) = e_i(t_k^-) - \alpha_i e_i(t_k^-), t = t_k, i = 1, 2, 3, 4,$$
 (4b)

which can be rewritten as

$$\dot{e} = Ae + f(x, y), \ t \neq t_k \tag{5a}$$

$$e_{i}(t_{k}^{+}) = e_{i}(t_{k}^{-}) - \alpha_{i}e_{1}(t_{k}^{-}), t = t_{k}, i = 1,2,3,4,$$

$$(5b)$$

where
$$e = (e_1, e_2, e_3, e_4)^T$$
, $A = \begin{pmatrix} -a & a & 0 & 0 \\ 1 & b & 0 & 1 \\ 0 & 0 & -c & 0 \\ -d & 0 & 0 & 0 \end{pmatrix}$, $f(x, y) = Be$, $B = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -y_3 & 0 & x_1 & 0 \\ y_1 - x_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

$$\boldsymbol{J}_{1} = \boldsymbol{A} + \boldsymbol{B} , \boldsymbol{J}_{2} = \begin{pmatrix} 1 - \alpha_{1} & 0 & 0 & 0 \\ 0 & 1 - \alpha_{2} & 0 & 0 \\ 0 & 0 & 1 - \alpha_{3} & 0 \\ 0 & 0 & 0 & 1 - \alpha_{4} \end{pmatrix}, \boldsymbol{\mu} = \lambda_{\max} \left(\frac{\boldsymbol{J}_{1}^{T} + \boldsymbol{J}_{1}}{2} \right), \boldsymbol{\nu} = \boldsymbol{\sigma}_{\max} \left(\boldsymbol{J}_{2}^{T} \boldsymbol{J}_{2} \right).$$

 $\lambda_{\max}(.)$ and $\sigma_{\max}(.)$ denote the maximal eigenvalue and the maximal singular value of matrix, respectively.

The goal is to propose simple input controllers so that the state errors in (5) satisfy

$$\lim_{t \to \infty} e_i(t) = 0, i = 1, 2, 3, 4. \tag{6}$$

We propose the following theorem:

Theorem 1. Consider the unidirectional impulsive coupling (1) and (2), suppose that the average impulsive interval of the impulsive sequence $\xi = \{t_0, t_1, t_2, \dots\}$ is less than T_a . Then, the system (4) is globally exponentially stable with convergence rate η if

$$\eta \ge \frac{1}{T_a} \ln \left| \nu \right| + \mu \,. \tag{7}$$

Proof: Let $E = (e_1, e_2, e_3, e_4)^T$, choose the Lyapunov functional candidate as following

$$V = \frac{1}{2}E^T E. (8)$$

When $t \in [t_{k-1}, t_k]$, the time derivative of V along trajectories of error dynamical (5) can be given by