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Abstract. In this paper, the finite-time synchronization of time-delay Hindmarsh-Rose with external
disturbance is investigated. Based on Lyapunov stability theory, a scheme is proposed and controllers are
constructed to realize it. Finally, numerical simulations are given to verify the theoretical results.
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1. Introduction

Recently, chaos synchronization has received much attention [1-5]. Many kinds of methods have been
proposed to study the synchronization of chaotic system, such as drive-response synchronization method [6],
adaptive control method [7], backstepping method [8], and so on. Various synchronization have been
observed, such as complete synchronization [9], Lag synchronization [10], phase synchronization [11], etc.
With further investigation, the time to realize synchronization received attention. Therefore finite-time
synchronization is studied in many fields [12-17], especially in neuron system.

Experimental studies [18] suggested that synchronization has significant meaning in the information
transferring of neurons. Meanwhile, in information transformation among neurons, not only the time-delay
always exists, but also the external disturbance is inevitable. Therefore, it is necessary to investigate the
synchronization of time-delay neural system with disturbance.

In this paper, finite-time synchronization of time-delay Hindmarsh-Rose system with external disturbance
is to be explored. Other parts are arranged as follows. Section 2 gives some preliminaries. In section 3, a
scheme is descripted to realize finite-time synchronization of time- delay Hindmarsh-Rose system with
disturbance. Section 4 gives some numerical simulations. Result is given in Section 5.

2. Preliminaries

= f(x)+ F(x)a+d(xt), @

¥ =g+ 6B +u(x), )
where x, ¥y € R" are state vectors. f(x),g(¥) € R** are linear matrix functions. F(x),G(y) € R"** are
nonlinear matrix functions.a, § are parameter vectors. d(x,t) € R™ is external disturbance. u(x,t) is controller
vector.
Hypothesis 1(H1): The nonlinear matrix function g(x) satisfies Lipschitz condition, that is

lg(x) — gl = Lgllx — I,

where L, is an appropriate positive constant. ||-|| denotes the norm of matrix or vector, defined as

1 . 1
lAll = (X7 X2y a5 for matrix A = (@) mxn OF [|x]] = (Xieq x7)2 for vector x = (xq, -+, %),

Hypothesis 2(H2): The uncertain parameters a, 5 and disturbance d(x,t) are all bounded in terms of norm,
namely, there exist positive constants 6,8z, 6, such that
Let e = y — x, subtracting (1) from (2) yields
e=v—x=g(y)—fx)+ Gy — Flx)a+u(x, t)— d(x, t). (3)
Therefore, to realize the finite-time synchronization of systems (1) and (2) means to obtain finite-time
stability of error system (3). For this end, following definition of finite-time synchronization and some
necessary lemmas are introduced as follows.
Definition 1[19] Consider two chaotic systems

A = f ),
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i, = h(x,), (@)
where x,,,x. are two n-dimensional vectors. The subscripts ‘m’ and ‘n’ stand for the master and slave
systems, respectively. f:R™ = R™ and h: R — R™ are vector-valued functions. If there is a positive constant T
such that

limr—JT”x‘m - xs” =0,
and ||x,, — x|l = 0if t = T, then it is said that the finite-time synchronization between two systems of (4) can
be achieved.
Lemma 1[20] Assume that a continuous, positive-definite function V(t) satisfies the following differential
inequality:

V(t) < —cV(t), Yt =ty V(ty) =0, (5)
where ¢ = 0, 0 < n < 1 are all constants. Then for any given t,, V(t)satisfies following inequality:
VI <Vt —c(l—m(t —ty), tg=t=<ty, (6)
and
V(t)=0,Vt=1t, (7)
with t; given by
VI (g,)
b=t + (8)
Proof. Consider differential equation:
X(t) = —cX"(1), X(to) = V(to). 9)
Although equation (9) doesn’t satisfy the global Lipschitz condition, the unique solution of it can be found as
1) = X1 7(tg) — (1L —n)(t —ty). (10)
Therefore, from the comparison Lemma [20], it can be gotten that
VITM<vit)—c(1—m(t—ty), tp<t=<ty, (11)
and
V(£)=0,Vt=t, (12)

with t; given in (8).
Lemma 2[21] Suppose 0 <r =1, a, b are positive constants, then the following inequality is quite
straightforward:

(lel + )" < lal” + [BI".

3. Finite-time synchronization of time-delay Hindmarsh-Rose system with
disturbance

In this paper, Hindmarsh-Rose (HR) system with time-delay is considered as following:
f=ax?—bx®+y—z(t —1) + Iy,
y=c—dx*—y,
z=r(Sx+k)—=2), (13)

where T = 0 is the time delay. Whent = 0, model (13) is a mathematical representation of the firing behavior
of neuron proposed by Hindmarsh and Rose [22]. In system (13), the variables x, ¥ and z represent the
membrane potential of the neuron, the recovery variable, and the adaptation current, respectively. The
current I, represents an external influence on the system. a, b, ¢, d, r, S, k are real constants.

Model (13) may describe regular bursting or chaotic bursting for certain domains of the parameters. When
T =1, other parameters are chosen asa=3.0,b =1.0,c= 1.0,d = 5.0, 7 = 0.006, S = 4.0, k = 1.6, system
(13) can show various complex dynamical behaviors with the changing of 1,,.. For example, when I,,, = 2.6
and I.... = 3.1, system (13) is regular bursting (Fig.1) and chaotic bursting (Fig.2), respectively.
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