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Abstract. This paper considers the 1; norm minimization (L1NM) problem which is a well known problem
in compressive sensing. We first transform the LINM problem into a bounded-constrained quadratic
programming (BCQP), and then into an equivalent linear variational inequality (LVI) problem. To solve the
resulting LVI problem, a modified extra-gradient method proposed by Han is introduced, whose global
convergence can be guaranteed by Han's paper. The method is easily performed, since it only make a
projection to the nonnegative orthant and calculate some matrix-vector products to get the next iterate.
Numerical simulations are conducted to verify the efficiency of the proposed method.
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1. Introduction

In this paper we consider the following 1; norm minimization problem, denoted by L1NM problem,

1
min | bf + ], 0

xeR"

where Ae R™"(m << n)is a linear operator, b € R™ is an observation, X € R" is the vector of unknowns,
n

||X||1 = Z|Xi| is the 1; norm of X, and parameter 1 >0 is used to trade off both terms for minimization,
i=1

whose value is quite important, for example, if 4 is too large then the solution is the trivial one: X =0.

Model (1) mainly appeared in statistical and signal processing fields, in which a sparse original signal

X € R" is desirable to be recovered by solving the LINM problem. In fact, preliminary work in this area
showed that if the original signal is sparse or approximately sparse in some orthogonal basis, an exact
restoration can be produced via solving (1) so long as certain conditions, such as the Restricted Isometry
Property (RIP) hold [1,2].

In recent years, the study in numerical methods for (1) has taken good progress, and many efficient
iterative algorithms have been proposed, analyzed, and tested. Among them, the most popular methods are
the iterative shrinkage/thresholding (IST) type methods, including IST fixed-point continuation algorithm
(FPC) in [3], two-step IST (TwIST) in [4], the fast IST algorithm (FISTA) in [5], and the latter two
algorithms have virtually the same complexity as IST, but have better convergence performance. Gradient
based algorithm is also quite efficient for solving the LINM problem due to its simplicity. Gradient
projection method for sparse reconstruction (GPSR) proposed by Figueiredo et al.[6] first transform the
LINM problem to a bound-constrained quadratic programming (BCQP) by splitting $x$ and solves BCQP
using Barzilai-Borwein gradient method with an efficient nonmonotone line search. Other gradient based
methods can be found in [7,8]. In addition, the alternating direction method (ADM) algorithms are also
introduced to solve the LIMN problem. For example, Yang and Zhang [9] investigates the L1MN problem
from either the primal or the dual forms and solves some 1, regularized problems related to LIMN problem.

In this paper, we continue to study the LIMN problem based on its BCQP transformation. As is pointed
by Xiao et al.[10], the resulting BCQP is equivalent to a linear variational inequality (LVI) problem. To our
knowledge, researchers haven't investigate the iterative method for the LIMN problem based on its LVI
formulation. Here, the resulting LVI problem is solved by the modified extra-gradient method proposed by
Han [11], which is an efficient method with quite low computational load. Therefore, the global convergence
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is followed directly in this literature. To do so, the rest of the paper is organized as follows. Section 2, we
summarize some basic definitions used in the paper, and list the steps of our algorithm. In Section 3, we
present and analyze the experimental results, which indicate that the proposed algorithm is quite efficient.
Finally, we summarize our paper in Section 4.

2. Preliminaries and the algorithm

In this section, we briefly review some related knowledge, and state our algorithm.

Firstly, we give the definition of projection operator, which is defined as a mapping from R" to its
nonempty closed convex subset ) :

P,[X]:= argmin{”y— X||| yeQ|,VxeR"

In [6], Figueiredo et al. express the LINM problem as a quadratic programming by splitting the variable X
into its positive and negative parts. That is, for any vector X € R", it can be formulated for

X=u-v,u=0,v=>0,

where U€R",veR" and U, =(x),,V, =(=X), forall i=L2,...,nwith (-), = max{0,

). We thus have

||X||1 =elu+e v, where e, isan n-dimensional vector with all elements one, so the LINM problem (1)

can be written as the following bound-constrained quadratic programming (BCQP):

l’IuliVn%”y —~A(u —v)||§ +elu+ el
stu>0,v=>0.

Then, the above problem is further written in more standard BCQP form:

o1
min=z"Hz + ¢’z
u,v

st.z 20,

ATA —ATA

u -y
here z=| |, y=A'b,c= + ,and H =
where {V} y HE, L’ } an {—ATA ATA

}. Obviously, H is a positive semi-

u
definite matrix, and for a given Z = [ } , the operations involving H can be performed economically,
\'

N {ATA(U—V) }
Hz=H| |=
V| | -ATAU-V)

and

2" Hz=(u-v)" ATAU-V) = Au-v)[..
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