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Abstract. In this paper we study some growth properties of iterated entire functions which improve some 

earlier results. 
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1. Introduction  

Let )(zf  and )(zg  be two transcendental entire functions defined in the open complex plane C. It is 

well known [1], {[15], p-67, Th-1.46} that 
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After this Singh [12], Lahiri [8], Song and Yang [14], Singh and Baloria [13], Lahiri and Sharma [9] 

and Datta and Biswas [3], [4] proved different results on comparative growth property of composite entire 

functions.  

     In this paper, we investigate the comparative growth of iterated entire functions in terms of its (p,q)-th 

order which is the generalization of previous results. We do not explain the standard notations and 

definitions of the theory of entire functions as those are available in [5], [15] and [16]. 

    The following definitions are well known. 

Definition 1.1. The orde f  and lower order f of a meromorphic function )(zf  is defined as  
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If )(zf  is entire then 
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Notation 1.2. [11]  xxxx  ]0[]0[ e x p,l o g and for positive integer m, ),log(loglog ]1[][ xx mm   

)exp(expexp ]1[][ xx mm  . 

Definition 1.3. [6] The  ),( qp -th order ),( qpf   and lower ),( qp -th order ),( qpf  
 of a meromorphic 

function  )(zf  is define as  
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If )(zf  is entire then 
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where qp  . Clearly ff  )1,2( and ff  )1,2( . 

According to Lahiri and Banerjee [7] if )(zf  and )(zg  are entire functions then the iteration of )(zf  

with respect to )(zg   is defined as follows: 
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Clearly all )(zfn  and )(zgn are entire functions. 

 

2. Lemmas  

In this section we present some lemmas which will be needed in the sequel. 

Lemma 2.1. [5] Let )(zf  be an entire function. For  Rr0 , we have  
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Lemma 2.2. [1] If )(zf  and

 

 )(zg  are any two entire functions, for all sufficiently large values of r, 
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Lemma 2.3. [10] Let )(zf  and

 

 )(zg be two entire functions. Then we have  
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Lemma 2.4. Let )(zf  and

 

 )(zg be two entire functions of non- zero finite (p,q)-th order ),( qpf  

and ),( qpg  respectively, then for any 0  and qp  , 
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for all sufficiently large values of r. 

 

Proof. First suppose that n is even. Then from second part of Lemma 2.2 and Definition of (p,q)-th order, it 

follows that for all sufficiently large values of  r,  
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Taking repeated logarithms p-1 times, we get 


