

On the Growth Estimate of Iterated Entire Functions

Ratan Kumar Dutta

Department of Mathematics, Netaji Mahavidyalaya, Arambagh, Dist.- Hooghly, Pin-712601, West Bengal, India, E-mail: ratan_3128@yahoo.com (Received March 30, 2014, accepted October 23, 2015)

Abstract. In this paper we study some growth properties of iterated entire functions which improve some earlier results.

Keywords: Entire functions, growth, iteration, order, lower order, (p,q)-th order, lower (p,q)-th order.

1. Introduction

Let f(z) and g(z) be two transcendental entire functions defined in the open complex plane C. It is

well known [1], {[15], p-67, Th-1.46} that
$$\lim_{r\to\infty}\frac{T(r,fog)}{T(r,f)}=\infty$$
 and $\lim_{r\to\infty}\frac{T(r,fog)}{T(r,g)}=\infty$.

After this Singh [12], Lahiri [8], Song and Yang [14], Singh and Baloria [13], Lahiri and Sharma [9] and Datta and Biswas [3], [4] proved different results on comparative growth property of composite entire functions.

In this paper, we investigate the comparative growth of iterated entire functions in terms of its (p,q)-th order which is the generalization of previous results. We do not explain the standard notations and definitions of the theory of entire functions as those are available in [5], [15] and [16].

The following definitions are well known.

Definition 1.1. The orde ρ_f and lower order λ_f of a meromorphic function f(z) is defined as

$$\rho_f = \limsup_{r \to \infty} \frac{\log T(r,f)}{\log r} \text{ and } \lambda_f = \liminf_{r \to \infty} \frac{\log T(r,f)}{\log r}.$$

If f(z) is entire then

$$\rho_f = \limsup_{r \to \infty} \frac{\log \log M(r,f)}{\log r} \text{ and } \lambda_f = \liminf_{r \to \infty} \frac{\log \log M(r,f)}{\log r}.$$

Notation 1.2. [11] $\log^{[0]} x = x$, $\exp^{[0]} x = x$ and for positive integer m, $\log^{[m]} x = \log(\log^{[m-1]} x)$, $\exp^{[m]} x = \exp(\exp^{[m-1]} x)$.

Definition 1.3. [6] The (p,q)-th order $\rho_f(p,q)$ and lower (p,q)-th order $\lambda_f(p,q)$ of a meromorphic function f(z) is define as

$$\rho_f(p,q) = \limsup_{r \to \infty} \frac{\log^{\lceil p-1 \rceil} T(r,f)}{\log^{\lceil q \rceil} r} \quad \text{and} \quad \lambda_f(p,q) = \liminf_{r \to \infty} \frac{\log^{\lceil p-1 \rceil} T(r,f)}{\log^{\lceil q \rceil} r} \, .$$

If f(z) is entire then

$$\rho_f(p,q) = \limsup_{r \to \infty} \frac{\log^{[p]} M(r,f)}{\log^{[q]} r} \quad \text{and} \quad \lambda_f(p,q) = \liminf_{r \to \infty} \frac{\log^{[p]} M(r,f)}{\log^{[q]} r}.$$

where p > q. Clearly $\rho_f(2,1) = \rho_f$ and $\lambda_f(2,1) = \lambda_f$.

According to Lahiri and Banerjee [7] if f(z) and g(z) are entire functions then the iteration of f(z) with respect to g(z) is defined as follows:

$$f_1(z) = f(z)$$

 $f_2(z) = f(g(z)) = f(g_1(z))$
 $f_3(z) = f(g(f(z))) = f(g_2(z)) = f(g(f_1(z)))$
.....
 $f_n(z) = f(g(f \dots (f(z) \text{ or } g(z)) \dots))$
 $according as \ nis \ odd \ or \ even,$

and so

$$\begin{split} g_1(z) &= g(z) \\ g_2(z) &= g(f(z)) = g(f_1(z)) \\ g_3(z) &= g(f(g(z))) = g(f_2(z)) = g(f(g_1(z))) \\ &\dots \\ g_n(z) &= g(f_{n-1}(z)) = g(f(g_{n-2}(z))). \end{split}$$

Clearly all $f_n(z)$ and $g_n(z)$ are entire functions.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. **Lemma 2.1.** [5] Let f(z) be an entire function. For $0 \le r < R < \infty$, we have

$$T(r,f) \le \log^+ M(r,f) \le \frac{R+r}{R-r} T(R,f).$$

Lemma 2.2. [1] If f(z) and g(z) are any two entire functions, for all sufficiently large values of r,

$$M\left(\frac{1}{8}M\left(\frac{r}{2},g\right) - \mid g(0)\mid,f\right) \leq M(r,fog) \leq M(M(r,g),f).$$

Lemma 2.3. [10] Let f(z) and g(z) be two entire functions. Then we have

$$T(r, fog) \ge \frac{1}{3} \log M \left(\frac{1}{8} M \left(\frac{r}{4}, g \right) + O(1), f \right).$$

Lemma 2.4. Let f(z) and g(z) be two entire functions of non-zero finite (p,q)-th order $\rho_f(p,q)$ and $\rho_g(p,q)$ respectively, then for any $\varepsilon > 0$ and p > q,

$$\log^{\lceil (n-1)p-(n-2)q\rceil} M(r,f_n) \leq \begin{cases} (\rho_f(p,q)+\varepsilon)\log^{\lceil q\rceil} M(r,g) + O(1) & \text{when n is even,} \\ (\rho_g(p,q)+\varepsilon)\log^{\lceil q\rceil} M(r,f) + O(1) & \text{when n is odd} \end{cases}$$

for all sufficiently large values of r.

Proof. First suppose that n is even. Then from second part of Lemma 2.2 and Definition of (p,q)-th order, it follows that for all sufficiently large values of r,

$$\begin{split} M(r,f_n) &\leq M(M(r,g_{n-1}),f) \\ i.e., & \log^{[p]} M(r,f_n) \leq \log^{[p]} M(M(r,g_{n-1}),f) \\ &\leq (\rho_f(p,q) + \varepsilon) \log^{[q]} M(r,g_{n-1}) \\ So, & \log^{[p+1]} M(r,f_n) \leq \log^{[q+1]} M(r,g(f_{n-2})) + O(1) \\ i.e., & \log^{[p+1-q]} M(r,f_n) \leq \log M(r,g(f_{n-2})) + O(1). \end{split}$$

Taking repeated logarithms p-1 times, we get