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Abstract. In this paper, we present the comparative study of Haar wavelet collocation method (HWCM) 

and Finite Element Method (FEM) for the numerical solution of parabolic type partial differential equations 

such as 1-D singularly perturbed convection-dominated diffusion equation and 2-D Transient heat conduction 

problems validated against exact solution. The distinguishing feature of HWCM is that it provides a fast 

converging series of easily computable components. Compared with FEM, this approach needs substantially 

shorter computational time, at the same time meeting accuracy requirements. It is found that higher accuracy 

can be attained by increasing the level of Haar wavelets. As Consequences, it avoids more computational 

costs, minimizes errors and speeds up the convergence, which has been justified in this paper through the 

error analysis. 
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1. Introduction  

 Differential equations have several applications in many fields such as: physics, fluid dynamics and 

geophysics etc. Many reaction–diffusion problems in biology and chemistry are modeled by partial 

differential equations (PDEs). These problems have been extensively studied by many authors, like Singh 

and Sharma [1], Giuseppe and Filippo [2] in their literature and their approximate solutions have been 

accurately computed provided the diffusion coefficients, reaction excitations, initial and boundary data are 

given in a deterministic way. However, it is not always possible to get the solution in closed form and thus, 

many numerical methods come into the picture. These are Finite Difference, Spectral, Finite Element and 

Finite Volume Methods and so on to handle a variety of problems. Many researchers such as, Kadalbajoo 

and Awasti [3], F. de Monte [4] are involved in developing various numerical schemes for finding solutions 

of heat conduction problems  appear in many areas of engineering and science. So, finding out flexible 

techniques for generating the solutions of such PDEs is quite meaningful. Researchers like Medvedskii and 

Sigunov [5] and Doss et.al [6] have used different techniques to solve the above problems and similar ones. 

Singularly perturbed problems appear in many branches of engineering, such as fluid mechanics, heat 

transfer, and problems in structural mechanics posed over thin domains. Theorems that list conditions for the 

existence and uniqueness of solutions of such problems are thoroughly discussed by Ross et.al [7] and Gamel 

[8].  

     The application of FEM to various heat conduction problems began through a paper by Zienkienicz and 

Cheung in 1965 [9]. Subsequently, Wilson and Nickel[10] have studied time dependent finite element with 

variational principle in their work on transient heat conduction problems with Gurtin’s Variational principle 

[11]. Zienkienicz and Parekh [12] derived isoparametric finite element formulations for 2-D and 3-D 

transient heat conduction problems to approximate the solution in space with recursion process of the 

solution in time.  Argyris et. al [13, 14] analyzed structural problems by using real time-space finite elements. 

A parabolic time-space element, an unconditionally stable in the solution of heat conduction problems 

through a quasivariational approach was used by Tham and Cheung [15]. Wood and Lewis [16] compared 

the heat equations for different time-marching schemes. However, it is necessary to choose very small time-

steps in order to overcome unwanted numerically induced oscillations in the solution. 
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From the past few years, wavelets have become very popular in the field of numerical approximations. 

Among the different wavelet families mathematically most simple are the Haar wavelets. Due to the 

simplicity the Haar wavelets are very effective for solving ordinary and partial differential equations. In the 

previous years, many researchers like Bujurke & Shiralashetti et al. [17, 18, and 19], Hariharan & Kannan 

[20] have worked with Haar wavelets and their applications. In order to take the advantages of the local 

property, Chen and Hsiao [21], Lepik [22, 23] researched the Haar wavelet to solve the differential and 

integral equations. Haar wavelet collocation method (HWCM) with far less degrees of freedom and with 

smaller CPU time provides better solutions than classical ones, see Islam et.al. [24]. In the present work, we 

use HWCM for solving typical heat conduction problems. 

The present paper is organized as follows; Haar wavelets and its generalized operational matrix of 

integration are presented in section 2. In section 3and 4 Method of solution of FEM and HWCM are 

discussed respectively. Section 5 deals with the numerical findings with error analysis of the examples. 

Finally, conclusion of the proposed work is presented in section 6. 

2. Haar wavelets and operational matrix of integration 

The scaling function 1( )h x  for the family of the Haar wavelets is defined as 
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The Haar wavelet family for  0,1x  is defined as 

                                              

0.5
1 ,

0.5 1
1 ,

0

( )i

k k
for x

m m

k k
for x

m m

Othe

h

r s

x

wi e

 
 
 









 

  
 





                                          (2.2) 

In the above definition the integer 2lm  , 0,1,..., ,l J  indicates the level of resolution of the wavelet and 

integer 0,1,..., 1k m   is the translation parameter.  

Maximum level of resolution is J . The index i  in Eq. (2.2) is calculated using 1i m k   . In case of 

minimal values 1, 0m k   then 2i  . The maximal value of i  is
12JN  . 

Let us define the collocation points
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   , discretize the Haar function ( )ih x , in this 

way, we get Haar coefficient matrix H( , ) h ( )i ji j x , which has the dimension N N . For 

instance, 3 16J N   , then we have 


