
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 

Vol. 11, No. 3, 2016, pp.169-179 

 

 
 

 

 

Haar Wavelet Based Numerical Solution of Elasto-hydrodynamic 

Lubrication with Line Contact Problems 

S.C. Shiralashetti1*, M.H. Kantli1, A. B. Deshi1  

1 Department of Mathematics, Karnatak University, Dharwad,580003, India,  

E-mail:shiralashettisc@gmail.com ;Mobile: +91 9986323159;  

Phone: +91 836-2215222(O);Fax: +91 836-347884. 

 (Received February 07, 2016, accepted June 12, 2016) 

Abstract. In this paper we present the haar wavelet based numerical solution of the highly nonlinear with 

coupled differential equation, i. e., elasto-hydrodynamic lubrication with line contact problems. It is a new 

alternative approach and we explore its perspectives and effectiveness in the analysis of elasto-hydrodynamic 

lubrication problems. To confirm its versatile features solutions obtained, using haar wavelet based method, 

are compared with existing method. 
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1. Introduction  

Wavelet analysis is capable of giving rich and useful description of a function based on a family of basis 

functions called wavelets. Recently, wavelet analysis has become an important tool in various research areas. 

The wavelet transform is notable for its ability in time–frequency localization and multi-resolution 

representation of transient non-stationary signals. Some of the haar wavelet based techniques has been 

successfully used in various applications such as time–frequency analysis, signal de-noising, non-linear 

approximation and solving different class of equations arising in fluid dynamics problems (Chen and Hsiao 

[1], Hsiao and Wang [2], Hsiao [3], Lepik [4-6], Bujurke et al. [7-9] and Islam [10]). 

Highly nonlinear and singularity in fluid flow problems is a difficult in numerical simulation. In numerical 

weather prediction and numerical simulation, the most common methods used are the finite difference method 

(FDM) on a uniform grid and the spectral method. Since the computational cost of the spectral method is rather 

large, the FDM is the preferable method at present. The grid space of a uniform grid is restricted to the 

minimum scale of the synoptic processes concerned. In numerical simulation of a highly nonlinear and 

singularity, a high resolution is necessary to get a good accuracy. However, this type of problems it is not 

reasonable to use a fine resolution grid uniformly across the whole domain (the storage and computational cost 

is very big). To overcome this, it requires the efficient method i.e., haar wavelet method. The main aim of this 

paper is to present haar wavelet collocation method (HWCM) to solve elasto-hydrodynamic lubrication 

problems and it has been widely applied in the field of science and engineering numerical simulation. 

The present work is organized as follows, in section 2, Wavelet Preliminaries are given. Section 3, 

discusses about the method of solution. Numerical experiments are presented in section 4. Results and 

discussions are given in section 5. Finally, conclusion of the proposed work discussed is in section 6. 

2. Wavelet preliminaries 

2.1. Multi-resolution analysis 

The understanding of wavelets is through a multi-resolution analysis. Given a function 2 ( )f L  a 

multi-resolution analysis (MRA) of 2 ( )L  produces a sequence of subspaces 1, , . . .j jV V   such that the 

projections of f onto these spaces give finer and finer approximations of the function f as j  . 

A multi-resolution analysis of 2 ( )L  is defined as a sequence of closed subspaces 2 ( ),jV L j   

with the following properties 
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(i) 1 0 1. . . . . .V V V    . 

(ii) The spaces jV  satisfy jj V  is dense in 2 ( )L  and 0jj V  . 

(iii)  If 0( ) , (2 )j
jf x V f x V  , i.e. the spaces jV  are scaled versions of the central space 0V . 

(iv)  If 0( ) , (2 )j
jf x V f x k V    i.e. all the jV  are invariant under translation. 

(v) There exists 0V   such that ( );x k k    is a Riesz basis in 0V . 

The space jV  is used to approximate general functions by defining appropriate projection of these 

functions onto these spaces. Since the union of all the jV  is dense in 2 ( )L , so it guarantees that any function 

in 2 ( )L  can be approximated arbitrarily close by such projections. As an example the space jV  can be 

defined like 
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then the scaling function ( )jh x  generates an MRA for the sequence of spaces  ,jV j  by translation 

and dilation. For each j the space j
W  serves as the orthogonal complement of jV  in 1jV  . The space jW  

include all the functions in 1jV   that are orthogonal to all those in jV  under some chosen inner product. The 

set of functions which form basis for the space jW  are called wavelets [10]. 

2.2. Haar wavelets 

The scaling function 1 ( )h x for the family of the Haar wavelets is defined as  
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The Haar wavelet family for  1, 0x  is defined as  
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In the above definition the integer, 2 , 0, 1, . . . ,lm l J  , indicates the level of resolution of the 

wavelet and integer 0, 1, . . . , 1k m   is the translation parameter. Maximum level of resolution is J .  

The index i  in Eq. (2) is calculated using, 1i m k   . In case of minimal values 1, 0m k  , then 

2i  . The maximal value of i  is 12JK  . Let us define the collocation points 

0.5
, 1, 2, . . . ,p

p
p K

K
x


 , discretize the Haar function ( )ih x  and the corresponding Haar 

coefficient matrix ( , ) ( ( ))piH i p h x , which has the dimension K K . 

The following notations are introduced 


