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Abstract. This paper concerns the solution for singularly perturbed via cubic spline in tension. The derived 

scheme leads to a tridiagonal system. The error analysis is proved and the method is shown to have a fourth 

order convergence for the particular choice of the parameters. Computational efficiency of the method is 

confirmed through numerical examples whose results are in good agreement with theory. 
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1. Introduction  

In this paper, we consider the following second-order singularly perturbed boundary value problem 

''( ) ( ) '( ) ( ) ( ) ( )y x p x y x q x y x r x                      (1) 

subject to the boundary conditions 

 (0) (1)y y         (2) 

where ( ), ( ), ( )p x q x r x  are smooth, bounded functions. It is well-known that the problem (1)-(2) exhibits 

boundary layer at one or both ends of the interval depending on the properties of ( )p x [1]. Singular 

perturbation problems arise very frequently in fluid mechanics, quantum mechanics, optimal control, 

chemical-reactor theory, aerodynamics, reaction-diffusion process, geophysics and many other areas in 

applied science and engineering. Numerical treatment of the problem (1)-(2) has been widespread in recent 

years, for instance [2, 4-14]. 

In [4], a tension spline method for the linear singularly perturbed problems was presented which has 

second and fourth order convergence depending on the choice of the parameters 1̀ and `2  involved in the 

method. However, Khan and Aziz[4] claim of fourth order convergence for the problem with first derivative 

term lacks theoretical and computational support because of two reasons. The replacement of first derivative 

term with given approximations does not affect the error analysis and no numerical example is given to test 

the competence of the method involving first derivative term. Khan and Aziz method[4] gives fourth order 

convergence only for the problems with absence of first  derivative term for some particular choice of 

parameters 1̀ and `2  concerned, but the order of convergence for the problems with first derivative term 

cannot exceed two, for any choice of parameters 1̀ and `2 . The proposed scheme is the modified form of  

Khan and Aziz  scheme in which a new parameter   is introduced to obtain the desired fourth order 

convergence for problems with first derivative term i.e., equation of the form (1) and (2). For the particular 

value of  i.e., 0  , the proposed scheme reduces to Khan and Aziz[4] scheme. The derivation of the 

scheme is developed in section 2. In section 3 error analysis is discussed and it shows convergence of order 

four is achieved only for a particular value of parameter , i.e., 
1

20



   along with 1̀

1

12
   and 

`2

5

12
  .  Also, it is showed that for any other choice of parameters, the order of convergence is two. 

2. A review of the research background 
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We develop a smooth approximate solution of (1) using cubic spline in tension. For this purpose we 

discretize the interval [0,1]  divided into a set of grid points ix ih , 0,...,i N  with 
1

h
N

 . A function 

( , )S x  of 2[ , ]C a b  which interpolates ( )y x  at the mesh point ix  depends on a parameter , reduces to 

cubic spline in [ , ]a b  as 0   is termed as parametric cubic-spline function. The spline function 

( , ) ( )S x S x   satisfying in 1[ , ]i ix x  , the differential equation, 

 1

1 1

( ) ( )
''( ) ( ) [ ''( ) ( )] [ ''( ) ( )]i i

i i i i

x x x x
S x S x S x S x S x S x

h h
  

 

 
         (3) 

where ( )i iS x y  and 0   is termed as cubic spline in tension. Solving the equation (3) and 

determining the arbitrary constants from the interpolatory conditions ( )i iS x y  and 1 1( )i iS x y  . After 

writing h  , we get 

2

1

12

( ) ( )
( ) [ sinh sinh ]

sinh

i i

i i

x x x xh
S x M M

h h

 

 





 
   

  
2 2 2

1

1 12 2 2

( ) ( )
[ ( ) ( )]i i

i i i i

x x x xh
M y M y

h hh h

 





 

 
       (4) 

Differentiating equation (4) and using continuity conditions which lead to the tridiagonal system 

 
2

1 1 2 1 1 1 1( 2 ) 2 1(1) 1i i i i i ih M M M y y y i N               (5) 

where 1̀ 2

1
(1 )

sinh





  , `2 2

1
( coth 1)  


  , ( )i iM S x . The condition (3) ensures the 

continuity of the first order derivatives of the spline ( , )S x  at interior nodes. We write (1) in the form 

( ) '( ) ( ) ( ) ( )i i i i i iM p x y x q x y x r x    and substituting into equation (5), and using the following 

approximations for first order derivatives of y : 

 
1

' 1 14 3

2i

i i iy y y
y

h

   
      (6) 

 
1

' 1 13 4

2i

i i iy y y
y

h

  
      (7) 

' 1 1

2

i i

i

y y
y

h

 
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' '

1 1( )
ii i iy y h f f      

2
' 1 1 1

1 1 1

1 2 (3 )
2 ( )

2

i i i
i i i i i

h q h p p
y y p p y

h

 
  

  

  
    

  
2

1 1 1
1 1 1

1 2 (3 )
( )

2

i i i
i i i

h q h p p
y h r r

h

 
  

  

   
      (8) 

We get the following three term recurrence relation, which gives the approximation 1 2 1, ,..., Ny y y  of 

the solution ( )y x  at the points 1 2 1, ,..., Nx x x   

2 2

1 1 1 1 2 1 1 1 1 1 1

3 1
( (1 2 ( 3 )) )

2 2
i i i i i i i ih p h q h p h q h p p hp y                     

2 2

1 1 2 1 1 2 1 1(2 4 ( ) 2 2 2 )i i i i i i ihp h p p p h q h p y              

  
2 2

1 1 1 1 2 1 1 1 1 1 1

1 3
( (1 2 (3 )) )

2 2
i i i i i i ih p h q h p h q h p p hp y                     

  
2

1 2 1 2 1 2 1(( 2 ) 2 ( 2 ) )i i i i ih h p r r h p r             ,  1,..., 1i N   (9) 

Using (9) with (2), we get the approximate solution of ( )y x at the grid points ix . 

Remark 1: For 0  , the present scheme reduces to Khan and Aziz [4] method. 


