

Solution for singularly perturbed problems via cubic spline in tension

K. Aruna ¹, A. S. V. Ravi Kanth ²

¹ Fluid Dynamics Division, School of Advanced Sciences, VIT University, Vellore, 632014, India,E-mail: k.aruna@vit.ac.in.

² Department of Mathematics, National Institute of Technology, Kurukshetra, 136119, Haryana, IndiaE-mail: asvravikanth@yahoo.com (Received December 31, 2014, accepted June 12, 2016)

Abstract. This paper concerns the solution for singularly perturbed via cubic spline in tension. The derived scheme leads to a tridiagonal system. The error analysis is proved and the method is shown to have a fourth order convergence for the particular choice of the parameters. Computational efficiency of the method is confirmed through numerical examples whose results are in good agreement with theory.

Keywords: singularly Perturbed Problems, Cubic Spline in Tension, Boundary Value Problems.

1. Introduction

In this paper, we consider the following second-order singularly perturbed boundary value problem

$$\varepsilon y''(x) = p(x)y'(x) + q(x)y(x) + r(x) \tag{1}$$

subject to the boundary conditions

$$y(0) = \alpha, y(1) = \beta \tag{2}$$

where p(x), q(x), r(x) are smooth, bounded functions. It is well-known that the problem (1)-(2) exhibits boundary layer at one or both ends of the interval depending on the properties of p(x) [1]. Singular perturbation problems arise very frequently in fluid mechanics, quantum mechanics, optimal control, chemical-reactor theory, aerodynamics, reaction-diffusion process, geophysics and many other areas in applied science and engineering. Numerical treatment of the problem (1)-(2) has been widespread in recent years, for instance [2, 4-14].

In [4], a tension spline method for the linear singularly perturbed problems was presented which has second and fourth order convergence depending on the choice of the parameters λ_1 and λ_2 involved in the method. However, Khan and Aziz[4] claim of fourth order convergence for the problem with first derivative term lacks theoretical and computational support because of two reasons. The replacement of first derivative term with given approximations does not affect the error analysis and no numerical example is given to test the competence of the method involving first derivative term. Khan and Aziz method[4] gives fourth order convergence only for the problems with absence of first derivative term for some particular choice of parameters λ_1 and λ_2 concerned, but the order of convergence for the problems with first derivative term cannot exceed two, for any choice of parameters λ_1 and λ_2 . The proposed scheme is the modified form of Khan and Aziz scheme in which a new parameter ω is introduced to obtain the desired fourth order convergence for problems with first derivative term i.e., equation of the form (1) and (2). For the particular value of ω i.e., $\omega = 0$, the proposed scheme reduces to Khan and Aziz[4] scheme. The derivation of the scheme is developed in section 2. In section 3 error analysis is discussed and it shows convergence of order

four is achieved only for a particular value of parameter ω , i.e., $\omega = -\frac{1}{20\varepsilon}$ along with $\lambda_1 = \frac{1}{12}$ and

 $\lambda_2 = \frac{5}{12}$. Also, it is showed that for any other choice of parameters, the order of convergence is two.

2. A review of the research background

We develop a smooth approximate solution of (1) using cubic spline in tension. For this purpose we discretize the interval [0,1] divided into a set of grid points $x_i = ih$, i = 0,...,N with $h = \frac{1}{N}$. A function $S(x,\tau)$ of $C^2[a,b]$ which interpolates y(x) at the mesh point x_i depends on a parameter τ , reduces to cubic spline in [a,b] as $\tau \to 0$ is termed as parametric cubic-spline function. The spline function $S(x,\tau) = S(x)$ satisfying in $[x_i,x_{i+1}]$, the differential equation,

$$S''(x) - \tau S(x) = [S''(x_i) - \tau S(x_i)] \frac{(x_{i+1} - x)}{h} + [S''(x_{i+1}) - \tau S(x_{i+1})] \frac{(x - x_i)}{h}$$
(3)

where $S(x_i) = y_i$ and $\tau > 0$ is termed as cubic spline in tension. Solving the equation (3) and determining the arbitrary constants from the interpolatory conditions $S(x_i) = y_i$ and $S(x_{i+1}) = y_{i+1}$. After writing $\lambda = h\sqrt{\tau}$, we get

$$S(x) = \frac{h^2}{\lambda^2 \sinh \lambda} \left[M_{i+1} \sinh \frac{\lambda (x - x_i)}{h} + M_i \sinh \frac{\lambda (x_{i+1} - x)}{h} \right]$$
$$-\frac{h^2}{\lambda^2} \left[\frac{(x - x_i)}{h} (M_{i+1} - \frac{\lambda^2}{h^2} y_{i+1}) + \frac{(x_{i+1} - x)}{h} (M_i - \frac{\lambda^2}{h^2} y_i) \right]$$
(4)

Differentiating equation (4) and using continuity conditions which lead to the tridiagonal system

$$h^{2}(\lambda_{1}M_{i-1} + 2\lambda_{2}M_{i} + \lambda_{1}M_{i+1}) = y_{i+1} - 2y_{i} + y_{i-1} \quad i = 1(1)N - 1$$
(5)

where
$$\lambda_1 = \frac{1}{\lambda^2} (1 - \frac{\lambda}{\sinh \lambda})$$
, $\lambda_2 = \frac{1}{\lambda^2} (\lambda \coth \lambda - 1)$, $M_i = S''(x_i)$. The condition (3) ensures the

continuity of the first order derivatives of the spline $S(x,\tau)$ at interior nodes. We write (1) in the form $\mathcal{E}M_i = p(x_i)y'(x_i) + q(x_i)y(x_i) + r(x_i)$ and substituting into equation (5), and using the following approximations for first order derivatives of Y:

$$y_{i-1} \cong \frac{-y_{i+1} + 4y_i - 3y_{i-1}}{2h} \tag{6}$$

$$y_{i+1} \cong \frac{3y_{i+1} - 4y_i + y_{i-1}}{2h} \tag{7}$$

$$y_{i}^{'} = \frac{y_{i+1} - y_{i-1}}{2h}, \ y_{i}^{'} \cong \tilde{y}_{i}^{'} + h\omega(\tilde{f}_{i+1} - \tilde{f}_{i-1})$$

$$y_{i} \approx \frac{1 + 2h^{2}\omega q_{i+1} + h\omega(3p_{i+1} + p_{i-1})}{2h} y_{i+1} - 2\omega(p_{i+1} + p_{i-1}) y_{i} + \frac{-1 - 2h^{2}\omega q_{i-1} + h\omega(3p_{i-1} + p_{i+1})}{2h} y_{i-1} + h\omega(r_{i+1} - r_{i-1})$$

$$(8)$$

We get the following three term recurrence relation, which gives the approximation $y_1, y_2, ..., y_{N-1}$ of the solution y(x) at the points $x_1, x_2, ..., x_{N-1}$

$$(-\frac{3}{2}h\lambda_{1}p_{i-1} + h^{2}\lambda_{1}q_{i-1} - h\lambda_{2}p_{i}(1 + 2h^{2}\omega q_{i-1} - h\omega(p_{i+1} + 3p_{i-1})) + \frac{1}{2}\lambda_{1}hp_{i+1} - \varepsilon)y_{i-1}$$

$$(2\lambda_{1}hp_{i-1} - 4h^{2}\lambda_{2}\omega p_{i}(p_{i+1} + p_{i-1}) + 2h^{2}\lambda_{2}q_{i} - 2h\lambda_{1}p_{i+1} + 2\varepsilon)y_{i}$$

$$(-\frac{1}{2}h\lambda_{1}p_{i-1} + h^{2}\lambda_{1}q_{i+1} + h\lambda_{2}p_{i}(1 + 2h^{2}\omega q_{i+1} + h\omega(3p_{i+1} + p_{i-1})) + \frac{3}{2}\lambda_{1}hp_{i+1} - \varepsilon)y_{i+1}$$

$$= -h^{2}((\lambda_{1} - 2\lambda_{2}h\omega p_{i})r_{i-1} + 2\lambda_{2}r_{i} + (\lambda_{1} + 2\lambda_{2}h\omega p_{i})r_{i+1}), \qquad i = 1,..., N - 1 \quad (9)$$

Using (9) with (2), we get the approximate solution of y(x) at the grid points x_i .

Remark 1: For $\omega = 0$, the present scheme reduces to Khan and Aziz [4] method.