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Abstract. Due to the extensive existence of time delay for natural population, it is necessary to take the 

effect of time delay into account in forming a biologically meaningful mathematical model. In view of this, a 

delayed predator-prey system with Holling type-IV functional response and impulsive dispersal between two 

patches is formulated. By using comparison theorem of impulsive differential equation and some analysis 

techniques, we obtain a predator-extinction periodic solution, which is globally attractive. Furthermore, it is 

proved that the investigated system is permanent. Numerical simulations are carried out to illustrate the 

theoretical results. 
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1. Introduction  

Dispersal is a ubiquitous phenomenon in natural world. Its importance in understanding the ecological 

and evolutionary dynamics of populations was mirrored by a large number of mathematical models devoted 

to it in the scientific literature. The persistence and extinction for ordinary differential equation and delayed 

differential equation models were investigated[1-3]. Global stability of equilibrium and periodic solution for 

diffusing models were studied[4-6]. 

However, in all of above population dispersing systems, it is always assumed that the dispersal occurs at 

every time. For example, in [3], Huang proposed the following periodic predator-prey system with Holling-

IV functional response: 

{
 
 

 
 𝑥̇1 = 𝑥1 [𝑏1(𝑡) − 𝑎1(𝑡)𝑥1 −

𝑐1(𝑡)𝑦

𝑒(𝑡)+𝛽(𝑡)𝑥1+𝑥1
2] + 𝐷(𝑡)(𝑥2 − 𝑥1).

𝑥̇2 = 𝑥2[𝑏2(𝑡) − 𝑎2(𝑡)𝑥2] + 𝐷(𝑡)(𝑥1 − 𝑥2).

𝑦̇ = 𝑦 [−𝑑(𝑡) +
𝑐2(𝑡)𝑥1

𝑒(𝑡)+𝛽(𝑡)𝑥1+𝑥1
2 − 𝑞(𝑡)𝑦] .

                           (1.1) 

The function 
𝑐(𝑡)𝑥1(𝑡)

𝑒(𝑡)+𝛽(𝑡)𝑥1(𝑡)+𝑥1
2(𝑡)

 represents the functional response of predator to the prey in patch 1. Let 

𝜓(𝑡, 𝑥1(𝑡)) =
𝑐(𝑡)𝑥1(𝑡)

𝑒(𝑡)+𝛽(𝑡)𝑥1(𝑡)+𝑥1
2(𝑡)

, then we have 

 
𝜕

𝜕𝑥1
𝜓(𝑡, 𝑥1(𝑡)) ≥ 0, 0 < 𝑥1(𝑡) ≤ √𝑒(𝑡), 

𝜕

𝜕𝑥1
𝜓(𝑡, 𝑥1(𝑡)) < 0, 𝑥1(𝑡) > √𝑒(𝑡). 

In practice, it is often the case that diffusion occurs at certain moment. For example, when winter comes, 

birds will migrate between patches in search for a better environment, whereas they do not diffuse in other 

seasons, and the excursion of foliage seeds occurs at certain moment every year. Therefore, it is not 

reasonable to characterize the population movements in these cases with continuous dispersal models. This 

short-time scale dispersal is more appropriately assumed to be in the form of impulses in the modeling 

process. With the developments and applications of impulsive differential equations, theories of impulsive 

differential equations have been introduced into population dynamics, and many important studies have been 

performed [7-11]. Hui [8] proposed the following single model with impulsive diffusion: 
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{
 
 

 
 
𝑥1
′(𝑡) = 𝑥1(𝑡)(𝑎1 − 𝑏1𝑥1(𝑡)),

𝑥2
′ (𝑡) = 𝑥2(𝑡)(𝑎2 − 𝑏2𝑥2(𝑡)),

Δ𝑥1(𝑡) = 𝑑1(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑥2(𝑡) − 𝑥1(𝑡)),

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏,
                                              (1.2) 

where 𝑎𝑖, 𝑏𝑖 (i = 1, 2) are the intrinsic growth and density-dependent parameters of the population in the i th 

patch, 𝑑𝑖  is the net dispersal rate between the i th patch and j th patch (i ≠  j, i, j = 1, 2). Δ𝑥𝑖(𝑡) 
=𝑥𝑖(𝑛𝜏

+)−𝑥𝑖(𝑛𝜏), where 𝑥𝑖(𝑛𝜏
+) represents the density of the population in the i th patch immediately after 

the n th diffusion pulse at time t = nτ, 𝑥𝑖(𝑛𝜏) represents the density of the population in the ith patch before 

the nth diffusion pulse at time t = nτ,( n = 1, 2,⋯, i = 1, 2). 

It is well known that the time delay is quite common for natural population. In order to reflect the 

dynamical behaviors of models that depend on the past history of system, it is necessary to take time delay 

into account in forming a biologically mathematical model. Delay differential equations have attracted a 

significant interest in recent years due to their frequent appearance in a wide range of applications, which 

serve as mathematical models describing various phenomena in physics, biology, physiology, and 

engineering, see [12-16] and references therein, their research topics include global asymptotic stability of 

the equilibria, existence of periodic solutions, complicated behaviors and chaos. 

Motivated by above analysis, in this paper, we will consider a delayed predator-prey system with 

Holling type-IV functional response and impulsive diffusion between two patches: 

{
 
 
 
 

 
 
 
 𝑥1

′(𝑡) = 𝑥1(𝑡)[𝑎1 − 𝑏1𝑥1(𝑡) −
𝑐1𝑦(𝑡)

𝑒+𝑥1(𝑡)+𝑥1
2(𝑡)
],

𝑥2
′ (𝑡) = 𝑥2(𝑡)(𝑎2 − 𝑏2𝑥2(𝑡)),

𝑦′ (𝑡) = 𝑦(𝑡)[−𝑑 +
𝑐1𝑥1(𝑡−𝜏1)

𝑒+𝑥1(𝑡−𝜏1)+𝑥1
2(𝑡−𝜏1)

− 𝑞𝑦(𝑡 − 𝜏2)]

Δ𝑥1(𝑡) = 𝑑1(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑥2(𝑡) = −𝑑2(𝑥2(𝑡) − 𝑥1(𝑡)),

Δ𝑦(𝑡) = 0,

,

𝑡 ≠ 𝑛𝜏,

𝑡 = 𝑛𝜏,

                          (1.3) 

with initial conditions 

𝑥1(𝑠) = 𝜙1(𝑠), 𝑥2(𝑠) = 𝜙2(𝑠), 𝑦(𝑠) = 𝜙3(𝑠), 
𝜙 = (𝜙1, 𝜙2, 𝜙3)

𝑇 ∈ 𝐶([−𝜏̃, 0], 𝑅+
3), 𝜙𝑖(0) > 0, 𝑖 = 1,2,3. 

In this case, we suppose that the system is composed of two patches connected by diffusion and 

occupied by a single species. 𝑥𝑖 (i = 1, 2) denotes the density of prey species in the ith patch, respectively, 

and y is the density of predator species. 𝑎𝑖  and 𝑏𝑖 denote the intrinsic growth rate and the density dependence 

rate of prey species in patch i(i = 1, 2), d is the death rate of the predator, and q represents the density 

dependence rate of predator species in patch 1, 𝑐1 is the capturing rate of the predator, 𝑐2/𝑐1 is the conversion 

rate of the nutrient into the production rate of the predator. 𝜏̃ = max{τ1, τ2}, τ1 ≥ 0 is a constant delay due to 

the gestation of the predator. In addition, we have included the term −𝑞𝑦(𝑡 − 𝜏2) in the dynamics of predator 

y to incorporate the negative feedback of predator crowding. 𝑑𝑖 is the net dispersal rate between the ith patch 

and jth patch (i≠j, i, j = 1, 2), 0 < 𝑑𝑖< 1 for i = 1, 2. 

Other part of this paper is organized as follows. Some important Lemmas are presented in section. In section 

3, the global attractively of the predator-extinction periodic solution and permanence of system (1.3) are 

investigated. In section 4, some numerical simulations are presented to illustrate the feasibility of our results. 

In the last section, we give a brief discussion of our results. 

2. Preliminaries 

In this section, we will give some definitions and lemmas.  

Let 𝑅+ = [0,+∞), 𝑅+
3 = {𝑥 ∈ 𝑅3, 𝑥 ≥ 0}, the map 𝑓 = (𝑓1, 𝑓2, 𝑓3)

𝑇 is defined by the right-hand sides of the 

first three equations of system (1.3), suppose 𝑉: 𝑅+ × 𝑅+
3 → 𝑅+, then V is said to belong to 𝑉0 if  

(1) V is continuous in [n 𝜏 ,(n +1)  𝜏 ]  × 𝑅+
3 , and, for each x ∈ 𝑅+

3 , n ∈ N ,  lim
(𝑡,𝑦)→(𝑛𝜏+,𝑥)

𝑉(𝑡, 𝑦) 

=𝑉(𝑛𝜏+, 𝑥) exists. 

(2) V is locally Lipschitzian in x. 

Definition 2.1. Let V∈ 𝑉0, then for (t, x)∈[n𝜏, (n + 1) 𝜏] × 𝑅+
3 , the upper right derivative of V (t, x) with 

respect to the impulsive differential equation (1.3) is defined as 


