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Abstract. This paper presents, Daubechies wavelet based full approximation scheme (DWFAS) for the 
numerical solution of Burgers’ equation, which is nonlinear partial differential equation (PDE) arising in 
fluid dynamics using Daubechies wavelet intergrid operartors. The numerical solutions obtained are 
compared with existing numerical methods and exact solution. Some of the test problems are presented to 
demonstrate that DWFAS has fast convergence in low computational time and is very effective, convenient 
and quite accurate to systems of PDEs. 
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1. Introduction  
Burgers’ equation has attracted much attention. Solving this equation has been an interesting task for 

mathematicians. This equation has been found to describe various kinds of phenomena such as a 
mathematical model of turbulence and approximate theory of flow through a shock wave traveling in a 
viscous fluid [1].  Consider one–dimensional non-linear PDE with the following initial and boundary 
conditions: 
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Initial condition:      
           , 0 , 0 1u x f x x                                                            (1.2) 

Boundary conditions:   
       0 , , 1 , , 0u t g t u t h t t                                                   (1.3) 

is known as Burgers’ equation. Burgers’ model of turbulence is a very important fluid dynamics model and 
the study of this model and the theory of shock waves have been considered by many authors both for 
conceptual understanding of a class of physical flows and for testing various numerical methods. The 
distinctive feature of Eq. (1.1) is that it is the simplest mathematical formulation of the competition between 
non-linear advection and the viscous diffusion. It contains the simplest form of non-linear advection term  
and dissipation term   where ‘ ’ is the viscosity coefficient for formulating the physical phenomena of wave 
motion and thus determines the behavior of the solution. In 1915, such type of equation is introduced by 
Bateman [2] and proposed the steady-state solution of the problem.  Burgers [3] introduced this equation in 
1948, to capture some features of turbulent fluid in a channel caused by the interaction of the opposite effects 
of convection and diffusion, therefore it is referred as ‘‘Burgers’ equation’’. The structure of Burgers’ 
equation is roughly similar to that of Navier–Stokes equations due to the presence of the non-linear 
convection term and the occurrence of the diffusion term with viscosity coefficient. So, this equation can be 
considered as a simplified form of the Navier–Stokes equations and also it is the simplest model of nonlinear 
partial differential equation for diffusive waves in fluid dynamics. The study of the general properties of 
Burgers’ equation has attracted attention of scientific community due to its applications in many physical 
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problems including one-dimensional sound/shock waves in a viscous medium, waves in fluid filled viscous 
elastic tubes, magneto hydrodynamic waves in a medium with finite electrical conductivity, mathematical 
modeling of turbulent fluid, and in continuous stochastic processes. 

Analytical methods for solving Burger's equation are very restricted and can be used in very special 
cases; so they cannot be used to solve equations of numerous realistic scenarios. Numerical methods which 
are commonly used such as finite difference, finite element methods etc. are need a large amount of 
computation and usually the effect of round-off error causes the loss of accuracy.   

So far many authors are applied various numerical methods to solve Burgers equations, some of them 
are finite element method [4], Least-squares quadratic B-spline finite element method [5], Cubic B-splines 
collocation method [6] etc. For large systems, these methods are inefficient in terms of both computer 
storage and computational cost.  

The multigrd approach is an alternative scheme to overcome these drawbacks. In 1964 Fedorenko [7] 
formulated a multigrid scheme to solve the Poisson equation in a recatangular domain. Bachvalov [8] 
generalized the technique for general elliptic PDEs in 1966. Up to this time, the approch was not yet 
practical. In 1973 the first practical results were published in a pioneering paper by Brandt [9]. He outlined 
the purpose and practical utility of multigrid methods.  Hackbush [10] independently discovered multigrid 
methods and provided some theoretical foundation in 1976. The multigrid method is largely applicable in 
increasing the efficiency of iterative methods used to solve large system of algebraic equations. Since their 
early application to elliptic partial differential equations, multigrid methods have been applied successfully 
to a large and growing class of problems. Classical multigrid begins with a two-grid process. First, iterative 
relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which 
the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct 
the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to 
multigrid. 

Bastian et al. [11] was investigated in series of experiments to solve parabolic PDEs using multigrid 
methods. However, when meet by certain problems, for example parabolic type of problems with 
discontinuous or highly oscillatory coefficients, as well as advection-dominated problems, the standard 
multigrid procedure converges slowly with larger computational time or may break down. For this reason we 
go for wavelet multigrid method in which by choosing the filter operators obtained from wavelets to define 
the prolongation and restriction operators. 

"Wavelets" have been very popular topic of conversations in many scientific and engineering gatherings 
these days. Some of the researchers have decided that, wavelets as a new basis for representing functions, as 
a technique for time-frequency analysis, and as a new mathematical subject. Of course, "wavelets" is a 
versatile tool with very rich mathematical content and great potential for applications. However wavelet 
analysis is a numerical concept which allows one to represent a function in terms of a set of basis functions, 
called wavelets, which are localized both in location and scale. In wavelet applications to the solution of 
partial differential equations the most frequently used wavelets are those with compact support introduced by 
Daubechies [12].  Recently, many authors De Leon [13], Bujurke et al. [14] and Shiralashetti et al. [15] have 
developed wavelet multigrid methods. 

This paper gives an alternative method i.e. Daubechies Wavelet based full approximation scheme for 
the numerical solution of Burgers equation using Daubechies filter coefficients. Daubechies FAS is 
formulated in this paper have the following characteristics: 
•Provide approximations which are continuous and continuously differentiable  throughout   

the domain of the problems, and have piecewise continuous second derivatives. 
•The methods possess super convergence properties. 
•The methods incorporate IC and BCs in a systematic fashion. 

The organization of the paper is as follows.  Preliminaries of Daubechies wavelets are given in section 2. 
Section 3 deals with Wavelet multigrid operators. Method of solution is discussed in section 4. Numerical 
findings and error analysis are presented in section 5. Finally, conclusions of the proposed work are 
discussed in section 6. 

2. Preliminaries of Daubechies wavelets 
A major problem in the development of wavelets during the 1980s was the search for a multiresolution 

analysis where the scaling function was compactly supported and continuous. As we know, the Haar 
multiresolution analysis is generated by a compactly supported scaling function that is not continuous. The 


