

A New Coding Theory on Fibonacci n-Step Polynomials

¹Monojit Das, ²Manjusri Basu

¹Department of Mathematics, Shibpur Dinobundhoo Institution (College), Howrah, India email: monojitbhu@gmail.com

² Department of Mathematics, University of Kalyani, Kalyani, W.B., India email: maniusri basu@vahoo.com (Received October 26, 2017, accepted January 18, 2018)

Abstract. In this paper, we develop a new series of Fibonacci n-step polynomials. Based on these series of polynomials, we introduce a new class of square matrix of order n. Thereby, we define a new coding theory called Fibonacci n-step polynomials coding theory. Then we calculate the generalized relations among the code elements for all values of n. It is shown that, for n = 2, the correct ability of this method is 93.33% whereas for n = 3, the correct ability of this method is 99.80%. The interesting part of this coding/decoding method is that the correct ability does not depend on x and increases as n increases.

Keywords: Fibonacci numbers, Fibonacci n-step numbers, Fibonacci polynomials, Fibonacci n-step polynomials, Fibonacci n-step polynomials coding, Error correction.

1. Introduction

The Fibonacci numbers F_k $(k=0,\pm 1,\pm 2,\pm 3,...)$ is defined by the second-order linear recurrence relation:

$$F_{k+1} = F_k + F_{k-1} \tag{1}$$

with the initial terms $F_0=0$, $F_1=1$.

The Fibonacci polynomials are the extension of the Fibonacci numbers, defined by the recurrence relation

$$F_{k+1}(x) = xF_k(x) + F_{k-1}(x)$$
 (2)

with the initial terms $F_0(x) = 0$, $F_1(x) = 1$.

with the initial terms $r_0(x) = 0$, $r_1(x) = 0$. The Fibonacci *n*-step numbers [15] $F_k^{(n)}$ are the generalizations of the Fibonacci numbers, defined by the recurrence relation

$$F_k^{(n)} = F_{k-1}^{(n)} + F_{k-2}^{(n)} + \dots + F_{k-n}^{(n)},$$

$$F_0^{(n)} = F_1^{(n)} = \dots = F_{n-2}^{(n)} = 0, F_{n-1}^{(n)} = 1$$
 (3)

for $k = 0, \pm 1, \pm 2, \pm 3, \dots$ and $n = 1, 2, 3, \dots$

The first few sequence of Fibonacci *n*-step numbers are summarized in the Table 1.

Table 1. Fibonacci *n*-step Numbers

k	-5	-4	-3	-2	-1	0	1	2	3	4	5	Name
$F_k^{(1)}$	1	1	1	1	1	1	1	1	1	1	1	Degenerate
$F_k^{(2)} F_k^{(3)}$	5	-3	2	-1	1	0	1	1	2	3	5	Fibonacci Numbers
$F_k^{(3)}$	-3	2	0	-1	1	0	0	1	1	2	4	Tribonacci Numbers
$F_k^{(4)}$	2	0	0	-1	1	0	0	0	1	1	2	Tetranacci Numbers
$F_k^{(5)}$	0	0	0	-1	1	0	0	0	0	1	1	Pentanacci Numbers

For $k \ge n-1$, $r_n = \lim_{k \to \infty} \frac{F_k^{(n)}}{F_{k-1}^{(n)}}$ exists, called n- annaci constant and is the real root ≥ 1 of the equation

$$x^{n} - x^{n-1} - x^{n-2} - \dots - x - 1 = 0$$

For even n, there are exactly two real roots, one is > 1 and one is < 1 and for odd n, there is exactly one real root, which is always ≥ 1 , the equality sign hold if and only if n = 1.

Actually, $r_1 = 1, r_2 = 1.61803$ called Golden mean, $r_3 = 1.83929$ called Tribonacci constant, $r_4 = 1.92756$ called Tetranacci constant, $r_5 = 1.96595$ called Pentanacci constant etc. and $\lim_{n \to \infty} r_n = 2$ [6].

In 2006, A. P. Stakhov introduces a new coding theory on Fibonacci matrices [14]. In 2009, M. Basu and B. Prasad describe the generalized relations among the code elements for Fibonacci coding theory [1] and Coding theory on the m-extension of the Fibonacci p-numbers [2]. In 2010, M. Esmaeili and M. Esmaeili introduce a Fibonacci-polynomial based coding method with error detection and correction [12]. After that, M. Basu and M. Das present a new coding theory on Tribonacci matrices [3], coding theory on Fibonacci n-step numbers [4] and coding theory on constant coefficient Fibonacci *n*-step numbers [5].

In this paper we define Fibonacci n-step polynomials and Fibonacci n-step polynomial matrix of order n. Thereby, we illustrate a new coding theory called Fibonacci n-step polynomials coding theory along with its properties.

$$F_k^{(n)}(x) = x^{n-1} F_{k-1}^{(n)}(x) + x^{n-2} F_{k-2}^{(n)}(x) + \dots + F_{k-n}^{(n)}(x), \tag{4}$$

Definition 1.1. The Fibonacci n-step polynomials $F_k^{(n)}(x)$ are defined by the recurrence relation $F_k^{(n)}(x) = x^{n-1}F_{k-1}^{(n)}(x) + x^{n-2}F_{k-2}^{(n)}(x) + ... + F_{k-n}^{(n)}(x),$ (4) with the initial terms $F_0^{(n)}(x) = F_1^{(n)}(x) = \cdots = F_{n-2}^{(n)}(x) = 0, F_{n-1}^{(n)}(x) = 1, \text{ for } k = 0, \pm 1, \pm 2, \pm 3, ... \text{ and } f_{n-1}^{(n)}(x) = 0$ $n = 1, 2, 3, \dots$

The first few sequence of Fibonacci *n*-step polynomials are summarized in the Table 2.

Table 1. Fibonacci *n*-step polynomials

Table 1. I lookacel it step polynomials												
k	-5	-4	-3	-2	-1	0	1	2	3	4	5	
$F_k^{(1)}(x)$	1	1	1	1	1	1	1	1	1	1	1	·
	$x^4 + 3x^2 + 1$	$-(x^3+2x)$	$x^2 + 1$	-x	1	0	1	x	$x^{2} + 1$	$(x^3 + 2x)$	$x^4 + 3x^2 + 1$	
	$-(x^4+2x)$	$x^3 + 1$	0	-x	1	0	0	1	χ^2	$(x^4 + x)$	$x^6 + 2x^3 + 1$	
	$(x^4 + 1)$	0	0	-x	1	0	0	0	1	x^3	$x^6 + x^2$	
$F_k^{(5)}(x)$	0	0	0	-x	1	0	0	0	0	1	x^4	

Definition 1.2. n- annaci polynomial ratio is defined by $\frac{F_k^{(n)}(x)}{F_{k-1}^{(n)}(x)}$, $k \ge n-1$. Taking $k \to \infty$, we have

$$\lim_{k \to \infty} \frac{F_k^{(n)}(x)}{F_{k-1}^{(n)}(x)} \text{ exists [13] and } \lim_{k \to \infty} \frac{F_k^{(n)}(x)}{F_{k-1}^{(n)}(x)} = r_n(x), \text{ say which depends on } x.$$
 For example, $r_2(x) = \frac{x + \sqrt{x^2 + 4}}{2}$,

$$r_2(x)$$

$$r_3(x) = \frac{2^{\frac{1}{3}}x^2 + (2x^6 + 9x^3 + 27 + \sqrt{-19x^6 + 378x^3 + 729})^{\frac{1}{3}} + (2x^6 + 9x^3 + 27 - \sqrt{-19x^6 + 378x^3 + 729})^{\frac{1}{3}}}{2^{\frac{1}{3}} \times 3}.$$

Definition 1.3. Fibonacci n-step polynomial matrix $M_n(x)$ is a square matrix of order n and is given by

$$M_n(x) = \begin{pmatrix} x & 1 \\ I_{n-1} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} x^{n-1} & x^{n-2} & x^{n-3} & \cdots & x & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$