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Abstract. Replicated data with measurement errors frequently exist in various scientific fields. In this work, 
we propose a replicated measurement error model for such data under scale mixtures of normal distributions. 
We consider local influence diagnostics to detect and classify outliers in the data through different perturbation 
schemes. A simulation study and an application confirm the effectiveness and robustness of the diagnostic 
method. 
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1. Introduction  
 Local influence analysis [1] is one of the effective ways to detect and classify outliers. Through various 
perturbation schemes on the established statistical model, it can detect the influential observations and make 
outlier discrimination. The latest research on this area can be seen, for example, in [2-5]. 

In this paper, we focus on outlier detection in replicated data with measurement errors. At first, we need 
to establish an appropriate model to depict the correlation between repeated measurements data as well as to 
characterize the effect of measurement errors on the data. Generally, the model is based on the assumption of 
normal distribution [6,7]. Recently, Cao et al. [8,9] proposed a replicated measurement error model under 
heavy-tailed distribution, which can bring us robust inferences. In this paper, we study local influence analysis 
on the heavy-tailed replicated measurement error model under different perturbation schemes. We aim to 
achieve an effective and robust diagnostic method for outlier detection in replicated measurement data. 

The paper is organized as follows. In Section 2, we give the diagnostic methodology, including a brief 
description of the heavy-tailed replicated measurement error model and the local influence approach. In 
Section 3, we carry out numerical simulation. In Section 4, we display an application on a real data. We give 
a brief conclusion in the last section. 
 

2. Methodology 
2.1  The model 

Let t and t ( 1, ,t n ) represent the true values of the explanatory variable and the response variable 
in the observations respectively. Their corresponding actual repeated measurement data are ( ) , 1, ,i

tx i p  
and ( ) , 1, ,j

ty j q , which satisfy a replicated measurement error model 
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Where   and   are measurement errors. Let (1) ( ) (1) ( )( , , , , , )p q T
t t t t tx x y yZ be the actual observations. Unlike 

the traditional normality assumption, here we propose a hierarchical distribution structure for tZ : 
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where m p q  , (0, ,0, ) , ( , )T T T T T
q p q  1 1 1a b , p1 and q1 represent p-dimensional and q-dimensional vector 

of ones respectively, ( )TT T
δ p ε q= , 1 1 , ( )D  denotes the diagonal transformation that transforms a vector to a 

diagonal matrix. The latent variable tv  can adjust the weight of the influence of different samples on the 
parameter estimation, so as to obtain a robust inference effect. Statistical inference of this model can be found 
in [8]. 
 2.2  The local influence approach 

The purpose of local influence is to summarize the behavior of some influence measure ( )T ω  when small 
perturbations take place in the data or model, where 1( , , )g ω  is a g-dimensional perturbation vector. Let 

( , , , , , )T
       θ  be the parameter vector of model (1), ( )c v , ,Z Z ξ  be the complete-data, where 
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      b D bφ . Let 
( )cl cθ,ω Z  be the log-likelihood of the perturbed model for the complete-data. We assume that there is an 0ω

such that ( | ) ( | )c c c cl l0θ,ω Z θ Z  for all θ . Let ˆ( )θ ω  be the maximum likelihood estimation of θ  under the 
function ˆ ˆ( ) E{ ( ) | }cQ l cθ,ω | θ θ,ω | Z θ,Z . We define ( ) ( , ( ))T T

Qfα ω ω ω  as the influence graph, where 
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θQ (θ) θ θ θ θ has elements given 
by (the elements not shown are all 0. The following is the same) 
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In this section we consider three different perturbation schemes: case-weight perturbation, response 
variable perturbation and variance ratio perturbation. The key step is to calculate the elements of the matrix 

0ωΔ . 
i) Case-weight perturbation 

We consider an arbitrary attribution of weights for the expected complete-data log-likelihood function 

called perturbed Q-function, which is presented by , ,
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n ω is an 1n vector with 0 (1, ,1)Tω .  The matrix 
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0

2

1

ˆ( | ) 1 ˆˆ| [ ( )]
n

t t
tt

Q



  
  






 

 
ω ω

θ θ , 
0

2

1 1

ˆ( | ) 1 ˆˆ| [ ( )]
qn

t tj t
t jt

Q y


  
  



 


  

 
 ω ω

θ θ ,
 

0

2

1 1

ˆ ˆ( | ) 1 ˆ ˆˆ| [ ( )]
qn

t t tj t
t jt

Q y q
 


    

   


 


   

 
 ω ω

θ θ , 

0

2
2 2

2
1

ˆ( | ) 1 1 ˆˆ| [ ( ) ]
2 2

n

t t
tt

Q

  

   
   






    

 
ω ω

θ θ , 


