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Abstract. In this paper, based on the classic BA scale-free network model, we proposed a new evolution 

model that gives a more realistic description of the people’s behavior on social networks. In the process of 

growth, there are local preferential attachment mechanisms and random attachment or removal between the 

old and new edges. We proved that the extended model follows the power-law distribution and the power 

exponent is between 2 and 3, which provides a theoretical support for analyzing the similar social network. 

Compared with the classic BA model, the extended model has a smaller average path length and a larger 

clustering coefficient, which is more consistent with the real social network. 
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1. Introduction  

As an important tool to study the complexity problem, complex networks have aroused research 

upsurge in recent years. A amount of complex networks exist in the real world, such as aeronautical 

networks, biological networks, social networks and so on. It is found that more and more real networks 

follow the power-law distribution, called scale-free network [1]. The BA scale- free model [2] focuses on 

characterizing the power-law distribution of actual networks. In order to be more in line with the logic of real 

network evolution, it is of great theoretical significance and application value to extend the basic BA scale-

free network model. Albert and Barabasi [3] proposed an extended model (EBA model) of network evolution 

that has more practical significance in the study of local processes. Bianconi and Barabasi [4] assigned a 

fitness parameter to each node and defined the fitness model. The fitness model have such characteristics of 

‘first- mover-wins, fit-gets-richer and winner-takes-all’. 

There are some other extension models. Watts and Strogatz [5] explored a small-world model, which 

has short-path, high clustering features and satisfies the characteristics of the small world networks [6-7] that 

mimic the evolution of a social network process. Barabasi and Albert [8-9] studied the World Wide Web 

(WWW) and proposed a BA scale-free model based on growth and prioritization. Li, Jin and Chen [10] 

studied complexity and synchronization of the World Trade Web (WTW), and investigated some scale-free 

features of the WTW. In [11] , based on the new concept of  local-world connectivity, Li and Chen proposed 

a local-world evolving network model. In the last few years, Wang, Xu and Pang studied the internal 

structure of online social networks and combined the inside growth, outside growth, and edge replacement 

base on those of complex networks, then proposed an evolution model in [12].  

The model we proposed here is grounded on a modification of the model presented by Barabasi (BA 

model) [2]. The mathematical definition of BA model: 

 Growth: start with a network of 
0n nodes. A new node is added at each timestep with m  

0( )n
 

edges that connect the new node to m  existing nodes. 

 Preferential attachment: the probability 
i of the new node connect the existing node i  depends on 

the degree 
ik
 
of node i  as 

                               (1) 

 

where n  is total number of nodes. 
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2. Model description 

Base on BA scale-free network, our algorithm is defined as follows:  

 

Initialization. Start with a network of 
0n nodes. Initial 

1 2 1 2 3 4, , , , , .n n m m m m  

Step 1. Growth: 
1n  nodes are added to the network and each new node connected to 

1m existing nodes by 

preferential attachment probability 
i
 
(as defined in (1)). 

Step 2. Preferential attachment: 
2n  new nodes are added simultaneously. And each new node connected to

 
a 

random existing node, denoted by .j Add 
2 1m  edges between the new node and the neighbor nodes 

of node .j  The edges are selected with probability: 

 '

( )

, ( ),i
i

s

s N j

k
i N j

k


  


         (2) 

where ( )N j  is the set of neighbor nodes of  node j . 

Step 3. Aggregation: break 3m edges randomly, then add 
4m 4 3( )m m edges that selected with equal 

possible probability.  

Output. Repeat step 1 to 3 t  times. The network has  
0 1 2( ) ( )N t n n n t  

  
nodes and 

 
1 1 2 2 4 3( ) ( )M t n m n m m m t     edges. 

 

In the above algorithm, as a widespread social network, Step 2 shows that a node recommended by a 

friend to the network is not only a friend of the recommender, but also a friend of his friend. This is in line 

with our natural situation. Another point is the preferential attachment in this step is only for the range of 

friends around the recommender, it is the local world of the node. The purpose of Step 3  is to make the 

network aggregate and satisfy the characteristics of the small world networks. 

3. Main result 

In this section, we prove that the extended network model follows the power-law distribution which is 

the property of scale-free networks. And we obtain some statistical properties of the extended model. 

We present some numerical results to performance of the extended model that is better than BA model. 

Degree distribution 

Let ( )ik t denote the degree of node i  at time step t . Node i  is added to the network at timestep 
it , we 

suppose that 

 
                                                               

(3) 

where 
0c  is a constant. The rate at which the node i  acquires new edges is given by our algorithm: 

1 1 2 2 2 4 3

( ) 1 1 1 1
( 1)(1 ) ( ) ,

( ) ( ) ( )

i
i

nn

dk t
n m n n m m m

dt N t N t k N t
       

 
        (4) 

 

where 
nnk  denotes the residual average degree of node i  (that is the average degree of the 

neighbors of node i ) [13]. According to [14], we suppose that ( )nn ik k t b    and b  is a small constant.  

The network has 
1 1 2 2 4 3( ) ( )M t n m n m m m t     edges after t  time steps. Then we have 

0( ) ,i ik t c


