

Periodic solutions for singular Liénard equations with indefinite weight

Chentong Zhao, Shiping Lu

¹School of math and statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China (Received February 12 2018, accepted July 19 2018)

Abstract In this paper, the problem of periodic solutions is studied for singular Liénard equations

$$\ddot{x}(t) + f(x(t))\dot{x}(t) + \varphi(t)x^{\mu}(t) = h(t),$$

where $f:(0,+\infty) \to R$ is continuous and has a singularity at the origin, μ is a positive constant. By using a continuation theorem of coincidence degree theory, a new result on the existence of positive periodic solutions is obtained. The interesting thing is that the sign of weight $\varphi(t)$ is allowed to change for $t \in [0,T]$.

Keywords: Liénard equation, Continuation theorem, Periodic solution

1. Introduction

In this paper, we are concerned with the existence of positive T -periodic solutions for the equations

$$\ddot{x}(t) + f(x(t))\dot{x}(t) + \phi(t)x^{\mu}(t) = h(t), \qquad (1.1)$$

where $f \in C((0, +\infty), R)$, ϕ is T –Periodic function with ϕ in L([0, T], R), μ is a positive constant. In this equation, the function f(x) has a singularity at x = 0, i. e., $\lim_{x \to 0^+} f(x) = +\infty$. Besides this, the sign of $\phi(t)$ is allowed to change. The equations of this type arise in modelling of important problems appearing in many physical contexts (see [1]-[5] and the references therein).

In the past years, under the conditions of $\phi(t) \ge 0$ and $\alpha(t) \ge 0$ for a. e. $t \in [0, T]$, the problem of existence of periodic solutions to the equation without friction term

$$\ddot{x}(t) + \phi(t)x(t) - \frac{\alpha(t)}{x^{\mu}} = h(t)$$

has been extensively studied by [6]-[10]. Beginning with the paper of Habets-Sanchez [11], many researchers in [12]-[15] have considered the classical Liénard equation with a singularity of repulsive type

$$\ddot{x}(t) + f(x(t))\dot{x}(t) + \varphi(t)x(t) - \frac{\alpha(t)}{x^{\mu}} = h(t).$$

In these papers, apart from the function $\varphi(t)$ satisfies $\varphi(t) \ge 0$ for a.e. $t \in [0,T]$, f(x) being continuous on $[0,+\infty)$ is needed. For the recent development of this area, we refer readers to the literature [16]-[19]. But up to our knowledge, few papers have considered the case where f(x) has a singularity at x = 0, and the sign of $\varphi(t)$ is indefinite. The reason for this is that, in such situation, the equation may have no a priori estimates.

Throughout this paper, let $C_T = \{x \in C(R,R) : x(t+T) = x(t) \text{ for all } t \in R\}$ with the norm defined by $|x|_{\infty} = \max_{x \in [0,T]} |x(t)|$, and $C_T^1 = \{x \in C^1(R,R) : x(t+T) = x(t) \text{ for all } t \in R\}$ with the norm defined by $||x||_{C_T} = \max\{ |x|_{\infty}, |\dot{x}|_{\infty} \}$. For any T – periodic solution y(t) with $y \in L([0,T],R)$, $y_+(t)$ and $y_-(t)$ is denoted by $\max\{y(t),0\}$ and $\min\{y(t),0\}$, respectively, and $\bar{y} = \frac{1}{T} \int_0^T y(s) ds$. Clearly, $y(t) = y_+(t) - y_-(t)$ for all $t \in R$, and $\bar{y} = \bar{y}_+ - \bar{y}_-$.

2. Preliminary lemmas

Lemma 2.1. [20] Assume that there exist positive constants m_0 , m_1 and M^* with $0 < m_0 < m_1$, such that the following conditions hold.

1. For any $\lambda \in (0,1]$, each possible positive T –periodic solution μ to the equation

$$(2.1)\ddot{\mathbf{u}}(t) + \lambda f(\mathbf{u}(t))\dot{\mathbf{u}}(t) + \lambda \phi(t)\mathbf{u}^{\mu}(t) = \lambda h(t)$$
satisfies the inequalities $\mathbf{m}_0 < \mathbf{u}(t) < \mathbf{m}_1$ and $|\dot{\mathbf{u}}(t)| < M^*$, for all $t \in [0, T]$.

2. The inequality

$$(\bar{h} - \bar{\phi} m_0^{\mu})(\bar{h} - \bar{\phi} m_1^{\mu}) < 0$$

holds.

Then, equation (1.1) has at least one T –periodic solution u such that $m_0 < u(t) < m_1$ for all $t \in [0, T]$. Lemma 2.2. Let $u: [0, \omega] \to R$ be an arbitrary absolutely continuous function with $u(0) = u(\omega)$. Then the inequality

$$(\max_{[0,T]} u(t) - \min_{[0,T]} u(t))^2 \le \frac{\omega}{4} \int_4^{\omega} |\dot{u}(s)|^2 ds$$

holds.

Now, we embed equation (1.1) into the following equations family with a parameter $\lambda \in (0,1]$

$$\ddot{\mathbf{x}}(t) + \lambda \mathbf{f}(\mathbf{x}(t))\dot{\mathbf{x}}(t) + \lambda \phi(t)\mathbf{x}^{\mu}(t) = \lambda \mathbf{h}(t), \lambda \in (0,1].$$

Let

$$D = \left\{ x \in C_{T}^{1} : \ddot{x}(t) + \lambda f(x(t))\dot{x}(t) + \lambda \phi(t)x^{\mu}(t) = \lambda h(t), \lambda \in (0,1]; x(t) > 0, \forall t \in [0,T] \right\},$$

$$F(x) = \int_{1}^{x} f(s)ds, G(x) = F(x) + x^{\mu}T\overline{\phi_{-}}, x \in (0,+\infty), \tag{2.2}$$

where f(x) and μ are determined in (1.1).

Lemma 2.3. Assume $\overline{\phi} > 0$, then for each $u \in D$, there are constants $\xi_1, \xi_2 \in [0, T]$ such that

$$u(\xi_1) \le \left(\frac{\overline{h}}{\overline{\varphi}}\right)^{\frac{1}{\mu}} := \eta \tag{2.3}$$

and

$$u(\xi_2) \ge \left(\frac{\bar{h}}{|\varphi|}\right)^{\frac{1}{\mu}} := \eta_0. \tag{2.4}$$

Proof. Let $u \in D$, then

$$\ddot{\mathbf{u}}(t) + \lambda \mathbf{f}(\mathbf{u}(t))\dot{\mathbf{u}}(t) + \lambda \varphi(t)\mathbf{u}^{\mu}(t) = \lambda \mathbf{h}(t),$$

which together with the fact of u(t) > 0 for all $t \in [0, T]$ gives

$$\frac{\ddot{u}(t)}{u^{\mu}(t)} + \frac{\lambda f(u(t))\dot{u}(t)}{u^{\mu}(t)} + \lambda \phi(t) = \lambda h(t).$$

Integrating the above equality over the interval [0, T], we obtain

$$\int_0^T \frac{\ddot{u}(t)}{u^{\mu}(t)} dt + \lambda \int_0^T \phi(t) dt = \lambda \int_0^T \frac{h(t)}{u^{\mu}(t)} dt,$$

i. e.,

$$\int_0^T \frac{\ddot{u}(t)}{u^{\mu}(t)} dt + \lambda T \overline{\phi} = \lambda \int_0^T \frac{h(t)}{u^{\mu}(t)} dt.$$

Since the inequality

$$\int_0^T \frac{\ddot{u}(t)}{u^{\mu}(t)} dt \ge 0$$

is easily obtained by a simple integration by parts, it follows from (2.1) that

$$T\overline{\phi} \leq \int_0^T \frac{h(t)}{u^{\mu}(t)} dt = \frac{T\overline{h}}{u^{\mu}(\xi_1)}.$$

By using mean value theorem of integrals, we have that there exists a point $\eta \in [0, T]$ such that

$$T\overline{\varphi} \le \frac{T\overline{h}}{u^{\mu}(\xi_1)}$$

i. e.,