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Abstract: This paper considers an inverse problem for a logistic model with free boundary. This inverse problem 

aims to identify the growth coefficient only depending on time from a fixed point measurement data. Based on a 

fixed point argument, we prove the local in time existence and uniqueness of our inverse problem.  
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1 Introduction  

Free boundary problems are a kind of mathematical physics models with one unknown function that 

defines this boundary. It has been found in a broad variety of physical applications, such as the one-phase 

Stefan problem [18,15,3,14,1,6], the free boundary problems for predator-prey model [13], the information 

diffusion in online social networks with time varying distance [20], ductal carcinoma in situ mathematical 

model [21] and so on. In the last twenty years, there has been a few of work related to the related inverse 

problems, see [7,9,10,13] and the references therein for more details. Such inverse problems are more 

complicated than the traditional ones because of the unknown free boundary. 

  In this paper, we consider the following diffusive logistic model with free boundary [11]: 

{
 
 

 
     𝑢𝑡 − 𝑑𝑢𝑥𝑥 = 𝑟(𝑡)𝑢 (1 −

𝑢

𝐾
),                   (𝑥, 𝑡) ∈ 𝑄𝑠,𝑇 ,

𝑢𝑥(0, 𝑡) = 𝑢(𝑠(𝑡), 𝑡) = 0,                         𝑡 ∈ (0, 𝑇),

𝑠(0) = 𝑠0 > 0,                                       

𝑢(𝑥, 0) = 𝑢0(𝑥),                                 𝑥 ∈ [0, 𝑠0],

𝑠′(𝑡) = −𝜇𝑢𝑥(𝑠(𝑡), 𝑡),                            𝑡 ∈ (0, 𝑇),

                                             (1.1) 

where Qs,T = {(x, t)|0 < x < s(t), 0 < t < T}, s(t) represents the free boundary is unknown function. 

System (1.1) can be used to depict information diffusion in online social networks, in which u(x, t) denotes 

the density of influenced users at time t and distance x, K and d indicate the carrying capacity and diffusion 

rate, respectively. 

  In this paper we couple to the equations the following additional the boundary observation on u: 
𝑢(0, 𝑡) = 𝑓(𝑡)      𝑡 ∈ [0, 𝑇],                                                                    (1.2) 

as our inversion input data to determine the unknown function r(t), which represents the intrinsic 

growth rate in this model. 

In [5], the authors proved showed the local in time existence and uniqueness of logistic model and 

further obtained blow-up property about a free boundary model. The authors [11] proved a global existence 

for a logistic equation with free boundary. 

The last boundary condition s′(t) = −μux(s(t), t) on boundary s(t) is called Stefan condition, which is 

widely used to describe phase transitions between solid and fluid states [2]. 

Recently, inverse source problems with a free boundary have received much attention. For example, 

Snitko [11] proved the local in time existence and uniqueness for an inverse problem of determining an 

unknown time-dependent leading coefficient in a parabolic equation with free boundary. Hussein, Lesnic, 

Ivanchov and Snitko [8] investigated a multiple time-dependent coefficient identification thermal problem 

with unknown free boundary under two additional integral conditions. 

In this paper, we consider a coefficient inverse problem for system (1.1), which is a semi-linear model 

with free boundary. On the other hand, we use the measurement at boundary point x = 0. In practical 

applications our measurement data are less than the global measurement data.  In this paper we will prove the 
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local existence and uniqueness for our coefficient inverse problem of determining r(t)  in (1.1) by the 

measurement data (1.2). 

The rest of our paper is organized as follows. In Section 2, we prove a local in time existence and 

uniqueness result for the direct free boundary problem and show the solution in suitable Sobolev space 

continuous dependence on T and r. In Section 3, we first transfer our inverse problem to an equivalent 

problem. Then a local existence and uniqueness of the equivalent problem is obtained by the contraction 

mapping.  

2 Direct free boundary problem 

In this section, we prove the existence local in time of the direct problem (1.1) in a suitable Banach 

space. Meanwhile, we show a continuous property of the solution with respect to r and T, which is important 

to consider the inverse problem of determining the unknown r. 
Firstly, we make a change of variable to straighten the free boundary. Let  Ω = (0,1), QT = Ω × (0, T), 

and 

 ξ =
x

s(t)
,          u(x, t) = v(ξ, t),                                                          (2.1) 

system (1.1) can be rewritten as 

{
 
 

 
 

  

vt − d
1

s2(t)
vξξ −

s′(t)

s(t)
ξvξ = r(t)v (1 −

v

K
),               (ξ, t) ∈ QT,

 vξ(0, t) = v(1, t) = 0,                                                         t ∈ (0, T),

v(ξ, 0) = v0(ξ),                                                                          ξ ∈ Ω̅,

 s(t)s′(t) = −μvξ(1, t),                                                     t ∈ (0, T),

                (2.2) 

where v0(ξ) = u0(x), and (1.2) is rewritten as 

v(0, t) = f(t),         t ∈ [0, T]                                                              (2.3) 

Let 

 h(t) = s(t)s′(t).                                                                                 (2.4) 

Then, (v, h) further satisfies the following problem: 

    

{
 
 

 
 vt − dA(h)vξξ − B(h)ξvξ = r(t)v (1 −

v

K
),           (ξ, t) ∈ QT,

vξ(0, t) = v(1, t) = 0,                                                       t ∈ (0, T),

 v(ξ, 0) = v0(ξ),                                                                           ξ ∈ Ω̅,

h(t) = −μvξ(1, t),                                                              t ∈ (0, T),

                   (2.5) 

with 

{

A(h) =
1

2∫ h(τ)dτ+s0
2t

0

,

B(h) =
h

2∫ h(τ)dτ+s0
2t

0

.
                                                        (2.6) 

We define 

XT = C
2+α,1+

α

2(Q̅T) × C
1

2
+
α

2[0, T],                                               (2.7) 

and 

||(v, h)||XT = ||v||C2+α,1+
α
2(Q̅T)

+ ||h||
C
1
2
+
α
2[0,T]

.                                    (2.8) 

Theorem 2.1. Let v0 ∈ C
2+α(Ω̅), v0

′ (1) < 0, r ∈ C
α

2[0, T]. Then there exists a sufficient small T0 > 0 such 

that the direct problem (2.5) has a unique solution (v, h) ∈ XT for any 0 < T < T0. Furthermore, we have the 

following estimate 

                 ||(𝑣, ℎ)||𝑋𝑇 ≤ 𝐶 [(𝑇 + 𝑇
2)‖𝑟‖

𝐶
𝛼
2[0,𝑇]

+ ||𝑣0||𝐶2+𝛼(Ω̅)],                                     (2.9) 

Where C is a constant depending on Ω, T, μ and s0. 

 

Proof. Define DM,T = VM,T × HM,T, where  

VM,T = {v̂ ∈ C
2+α,1+

α

2(Q̅T) |  v̂(ξ, 0) = v0(ξ) , ||v̂||
C
2+α,1+

α
2(Q̅T)

≤ M}, 

HM,T = {ĥ ∈ C
1

2
+
α

2[0, T] |  ĥ(t) = h∗ , ||ĥ||
C
1
2
+
α
2[0,T]

≤ M},                                       (2.10) 


