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Abstract. In this paper, a novel high accurate and efficient finite difference scheme is proposed for solving
the Schrdlinger-Poisson System. Applying a local extrapolation technique in time to the nonlinear part makes
the proposed scheme linearized in the implementation. In fact, at each time step, only two tri-diagonal
linear systems of algebraic equations are solved by using Thomas method. Another feature of the proposed
method is the high spatial accuracy on account of adopting the compact finite difference approximation to
discrete the system in space. Moreover, the proposed scheme preserves the total mass in discrete sense.
Under certain regularity assumptions of the exact solution, the local truncation error of the proposed
scheme is analyzed in detail by using Taylor’s expansion, and consequently the optimal error estimates
of the numerical solutions are established by using the standard energy method and a mathematical induction
argument. The convergence order is of O(t 2 + h4) in the discrete L2-norm and Loo-norm, respectively.
Numerical results are reported to measure the theoretical analysis, which shows that the new scheme is
accurate and efficient and it preserves well the total mass and energy.
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1. Introduction

The Schrdldinger-Poisson system (SPS) appears in nonlinear optics and plasma physics, more often in
guantum mechanics and semiconductor theory [1-3]. It is named by Diosi and Penrose who first proposed a
model to explain the collapse of quantum wave function. It can also be viewed as a nonlinear correction of
the Schradinger equation with Newtonian gravitational potential. According to the classical model [1], the
interaction between a charged particle and electromagnetic field can be described by coupling nonlinear
Schrddinger equation and Poisson equation. The dimensionless form of the SPS reads

i0,0(X,1) :[-%A+V(x)+ad)(x,t)]go(x,t), XxeQ, >0, (1.1)
-V2D(X,1) = o(x,0) |, xeQ, (1.2)
@(x,0) = @, (X), XeQ. (1.3)

Here ¢ is a complex-valued wave function which represents the single particle wave function with

lim | o(x,£)|=0, i =-1,Vis a given external trapping potential, & > 0 is the coupling parameter, ® is the

|X|—>00

Poisson potential, Qe R (d =1,2,3) is a bounded computational domain.

The Schré&dinger-Poisson system (SPS) can also be redefined as nonlinear Schr&dinger
Equation (NLS), i.e,

i@,go(x,t)=[-%A+V(X)+a®(|g0|2,t)]go(x,t), xeQ, t>0, (1.4)

and the Poisson potential ®(X, t) is expressed by convolution form

(@l )=l *G(Xx),

where G(|x|) is the Green function of Poisson equation on RU. Similarly, it easy to see that we have two
conserved quantities. The total mass gives in terms of
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M(1) = IQI p(x,0) " dx=llp(x,0) [’=M (0), 20,

and the total energy is
E(t) = LB IVo(x,0) 2 +V(X) | p(x,0) | +%q>(| o(x,1) )| p(x,1) |Z}dx = E(0), >0,

In the past decades, there are extensive researches in basic mathematical analysis carried out for the
Schrddinger-Poisson system. Pure theory analysis about the existence of solutions for the SPS can be found
in the literature [4-7]. Besides, for the dynamical properties and well-posedness of the SPS, we can read [8-9]
and the references therein. In addition to the above basic analyses, numerical analysis is of equal importance.
Various accurate and efficient numerical methods have been proposed for the Schr&dinger-Poisson system,
including the finite element method (FEM) [10-11], finite difference method (FDM) [12-17], and time-
splitting or (pseudo-)spectral-type method [8,18-22], such as spectral element method (SEM) [19-20],

spectral Galerkin method [21], splitting Chebyshev collocation method [22].

As far as we know, finite difference method is relatively rare in the numerical analysis of SPS.
Ringhofer et al. presented a discrete predictor-corrector SPS preserving energy and mass in [14], where the
discretization was based on the Crank-Nicolson scheme. In [14], the theoretical analysis is given, but no
numerical experiments are carried out to verify it. Ehrhardt et al. [15] also proposed a Crank- Nicolson-type
predictor-corrector scheme with a discrete transparent boundary condition to solve the spherically symmetric
SPS, and proved that the scheme satisfies discrete mass and energy conservation exactly by numerical
simulation. In [16], Chang et al. constructed a novel two-grid centered difference method for the numerical
solutions of the nonlinear Schré&dinger-Poisson (SP) eigenvalue problem, they obtained that the convergence
rate of eigenvalue computations on the fine grid is O(h3). To enhance the accuracy of convergence, Zhang
introduced compact finite difference discretization for SPS in [17]. He confirmed that the Crank-Nicolson
compact finite difference (CNCFD) method and the semi- implicit compact finite difference (SICFD)
method in their paper are both of order O(t 2 + h4) in the discrete L2-norm, Hl-norm and Loo-norm.
However, their error estimate results need a weak restriction on the grid ratio in extending their schemes to
two or three dimensions.

Compared with the standard difference scheme, the compact scheme can make better use of fewer mesh
points to achieve higher precision. Therefore, in view of the basis of [17], we propose a linearized compact
finite difference (LCFD) scheme with a local extrapolation technique. This scheme linearizes the nonlinear
term which can avoid using iterative method to deal with, and not only spends fewer time in the computation
but also improves the better convergence accuracy. Differing from the analysis method used in [17], we
establish the optimal error estimates without any restriction on the grid ratios by applying a lifting technique
as well as the standard energy method.

The paper has the following basic structure. In Section 2, we give some notations and auxiliary lemmas.
A linearized compact finite difference (LCFD) scheme for Schréinger-Poisson system (SPS) is proposed. In
Section 3, we establish the optimal error estimates in the discrete L2-norm and Loo-norm, respectively. In
Section 4, numerical experiments are presented to verify our theoretical analysis.

2. Finite difference scheme and auxiliary lemmas
For simplicity, we introduce this numerical method only in one-dimensional cases,extension to two or
three dimensions are straightforward. The wave function ¢ is exponentially decaying,so the problem of one-

dimensional Schrédinger-Poisson System will be truncated on bounded domain [a, b] in the calculation. We
consider the initial boundary value problem with Dirichlet boundary conditions for SPS (2.1)~(2.4):

i6t¢=-%8xx(p+V(x)(p+aCD(p, xe(a,b), te(0,T], (2.1)
-0, ®D(x,t) = p(x,1) [, xe(a,b), te(0,7T], (2.2)
@(x,0) = @, (x), x €[a,b], (2.3)
o(a,t) = p(b,t) =0, ®(a,t)=d(b,t)=0, te(0,T] (2.4)
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