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Abstract. In this paper, a novel high accurate and efficient finite difference scheme is proposed for solving 

the Schrödinger-Poisson System. Applying a local extrapolation technique in time to the nonlinear part  makes  

the  proposed  scheme  linearized  in  the  implementation. In  fact, at  each  time  step, only two tri-diagonal 

linear systems of algebraic equations are solved by using Thomas method. Another feature of the proposed 

method is the high spatial accuracy on account of adopting the compact finite difference approximation to 

discrete the system in space. Moreover, the proposed scheme  preserves  the  total  mass  in  discrete  sense. 

Under  certain  regularity  assumptions  of  the exact  solution, the  local  truncation  error  of  the  proposed  

scheme  is  analyzed  in  detail  by  using Taylor’s  expansion, and  consequently  the  optimal  error  estimates  

of  the  numerical  solutions  are established by using the standard energy method and a mathematical induction 

argument. The convergence order is of O(τ 2 + h4) in the discrete L2-norm and L∞-norm, respectively. 

Numerical  results  are  reported  to  measure  the  theoretical  analysis, which  shows  that  the  new scheme is 

accurate and efficient and it preserves well the total mass and energy. 

Keywords: Schrödinger-Poisson system, local extrapolation technique, compact finite difference 

scheme, conservation laws, optimal error estimates. 

1. Introduction 

The Schrödinger-Poisson system (SPS) appears in nonlinear optics and plasma physics, more often in 

quantum mechanics and semiconductor theory [1-3]. It is named by Diosi and Penrose who first proposed a 

model to explain the collapse of quantum wave function. It can also be viewed as a nonlinear correction of 

the Schrödinger equation with Newtonian gravitational potential. According to the classical model [1], the 

interaction between a charged particle and electromagnetic field can be described by coupling nonlinear 

Schrödinger equation and Poisson equation. The dimensionless form of the SPS reads 
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Here 
 
is a complex-valued wave function which represents the single particle wave function with 
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 , 1-2 i , V is a given external trapping potential, 0 is the coupling parameter, 
 
is the 

Poisson potential, )3,2,1(  dRd is a bounded computational domain. 

The Schrödinger-Poisson system (SPS)  can also be redefined as nonlinear Schrödinger  

Equation (NLS), i.e, 
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(1.4) 

and the Poisson potential Φ(x, t) is expressed by convolution form 

 

Φ(| |2, t) = | |2  ∗G(|x|), 

where G(|x|) is the Green function of Poisson equation on Rd. Similarly, it easy to see that we have two 

conserved quantities. The total mass gives in terms of 
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and the total energy is    
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In the past decades, there are extensive researches in basic mathematical analysis carried out for the 

Schrödinger-Poisson system. Pure theory analysis about the existence of solutions for the SPS can be found 

in the literature [4-7]. Besides, for the dynamical properties and well-posedness of the SPS, we can read [8-9] 

and the references therein. In addition to the above basic analyses, numerical analysis is of equal importance. 

Various accurate and efficient numerical methods have been proposed for the Schrödinger-Poisson system, 

including the finite element method (FEM) [10-11], finite difference method (FDM) [12-17], and time-

splitting or (pseudo-)spectral-type method [8,18-22], such as spectral element method (SEM) [19-20],  

spectral Galerkin method [21], splitting Chebyshev collocation method [22]. 

As far as we know, finite difference method is relatively rare in the numerical analysis of SPS. 

Ringhofer et al. presented a discrete predictor-corrector SPS preserving energy and mass in [14], where the 

discretization was based on the Crank-Nicolson scheme. In [14], the theoretical analysis is given, but no 

numerical experiments are carried out to verify it. Ehrhardt et al. [15] also proposed a Crank- Nicolson-type 

predictor-corrector scheme with a discrete transparent boundary condition to solve the spherically symmetric 

SPS, and proved that the scheme satisfies discrete mass and energy conservation exactly by numerical 

simulation. In [16], Chang et al. constructed a novel two-grid centered difference  method for the numerical 

solutions of the nonlinear Schrödinger-Poisson (SP) eigenvalue problem, they obtained that the  convergence 

rate of eigenvalue computations on the fine grid is O(h3). To enhance the accuracy of convergence, Zhang 

introduced compact finite difference discretization for SPS in [17]. He confirmed that the Crank-Nicolson 

compact finite difference (CNCFD) method and the semi- implicit compact finite difference (SICFD) 

method in their paper are both of order O(τ 2 + h4) in   the discrete L2-norm, H1-norm and L∞-norm. 

However, their error estimate results need a weak restriction on the grid ratio in extending their schemes to 

two or three dimensions. 

Compared with the standard difference scheme, the compact scheme can make better use of fewer mesh 

points to achieve higher precision. Therefore, in view of the basis of [17], we propose a linearized compact 

finite difference (LCFD) scheme with a local extrapolation technique. This scheme linearizes the nonlinear 

term which can avoid using iterative method to deal with, and not only spends fewer time in the computation 

but also improves the better convergence accuracy. Differing from the analysis method used in [17], we 

establish the optimal error estimates without any restriction on the grid ratios by applying a lifting technique 

as well as the standard energy method. 

The paper has the following basic structure. In Section 2, we give some notations and auxiliary lemmas. 

A linearized compact finite difference (LCFD) scheme for Schrödinger-Poisson system (SPS) is proposed. In 

Section 3, we establish the optimal error estimates in the discrete L2-norm and L∞-norm, respectively. In 

Section 4, numerical experiments are presented to verify our theoretical analysis. 

 

2.  Finite difference scheme and auxiliary lemmas 

For simplicity, we introduce this numerical method only in one-dimensional cases,extension to two or 

three dimensions are straightforward. The wave function   is exponentially decaying,so the problem of one-

dimensional Schrödinger-Poisson System will be truncated on bounded domain [a, b] in the calculation. We 

consider the initial boundary value problem with Dirichlet  boundary conditions for SPS (2.1)~(2.4):   
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