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Abstract: In this paper, the dynamical behaviors and projective synchronization of a five-dimensional
hyperchaotic Lorenz system are investigated. First of all, a hyperchaotic system is constructed by introducing
two state variables into the Lorenz chaotic system. Secondly, the dynamical behaviors of the proposed
system, such as the dissipative property and equilibrium point, are discussed. Thirdly, based on the stability
theory, the projective synchronization of the systems can be achieved. Finally, some numerical simulations
are given to verify the projective synchronization scheme.
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1 Introduction

Chaos is a very interesting nonlinear phenomenon. In 1963, Lorenz discovered the famous Lorenz
chaotic system [1]. After that, chaotic systems have been researched extensively, such as the Lusystem [2-
4], the Chen system [5] and the Ré&sler system [6]. Recently, much work has been done in constructing
hyperchaotic models [7-9]. However, there is no universal method to get hyperchaotic systems. Compared
with chaotic systems, hyperchaotic systems must have at least two positive Lyapunov exponents, and the
dimension must be four or more [10]. Hyperchaotic systems can be obtained by adding one or more state
variables to a three-dimensional chaotic system [11, 12]. Hyperchaotic systems have more abundant
dynamical characteristics and complex behaviors than chaotic systems [13, 14]. So they are better suitable
for some engineering applications, such as chemical reactions, electric circuits [15], cryptography [16, 17],
fluid dynamics and secure communication [18-20].

Chaos synchronization is another fascinating concept. Pecora and Carroll proposed a drive-response
chaotic synchronization scheme in 1990 [21], and realized the synchronization of two chaotic systems in the
circuit, which promoted the theoretical study of chaotic synchronization and chaos control. Since then, many
effective chaotic synchronization methods have emerged, such as complete synchronization [22, 23],
generalized synchronization [24], phase synchronization [25], lag synchronization [26, 27], projective
synchronization [28], anticipating synchronization [29] and exponential synchronization [30]. In recent
years, the synchronization of chaotic fractional differential systems [31, 32] has attracted more and more
attention because of its potential applications in secure communication and control processing [33-35].

The research of projection synchronization has received extensive attention from experts at home and
abroad in recent years. Projection synchronization is that under certain conditions, the output of the coupled
drive system and the response system state is not only phase locked, but the amplitude of each
corresponding state also evolves according to a certain scale factor relationship. The method has been
widely observed and discussed in coupled integer order chaotic systems.

The other parts of article is organized as follows. In section 2, a new five-dimensional hyperchaotic
Lorenz system is constructed and the dynamical behaviors of the hyperchaotic system are discussed, such as
attractor, dissipativity and equilibrium point. In section 3, the projective synchronization scheme of the
hyperchaotic system is designed and some numerical simulations are completed. In section 4, some
conclusions are given.

2 System description
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2.1 A new hyperchaotic Lorenz system
The famous Lorenz chaotic system can be represented by the following autonomous differential
equations
X1 = a(xz — %)
X, = CXq — X3 — X1X3, €))
X3 = X1X, — bx;

where a, b and c are real constants. When the parameters are chosen as a = 10, b = 8/3 and ¢ = 28,
the system (1) is chaotic.

A new five-dimensional system is constructed by adding two variables into Lorenz chaotic system. In
the first equation of the system (1), x, is introduced and the rate of change of x, is X4, = —x,X3 + dx,. In
the second equation of the system (1), another state x5 is introduced and the rate of change of x¢ is Xz = rx;.
The new five-dimensional system can be described as

(%1 =a(xXz —X1) + X4
X, = CXq — X3 — X1X3 + X5

5(3 = X1Xp — bX3 , (2)
X4 = _X2X3 + dX4
X5 = I'Xg

where a, b, ¢, d and r are real constants. When the parameters are chosen as a = 10, b = 8/3,¢c = 28,d =
—6 and r = =5, the system (2) is hyperchaotic. The chaotic attractors of the system (2) are plotted in Fig. 1
with the initial state (xq,X5,X3,%X4,%5) = (1, 1, 1, 1, 1).
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Fig. 1. Chaotic attractors of the system (2) in 2D spaces witha = 10, b =8/3,¢c = 28,d = —6and r = —5.

2.2 Dissipativity
The divergence of system (2) is calculated as
_ O O | Ok | Ok | Ok _

W= et o T o o = —19.667. 3)
When Vv < 0, the system (2) is a dissipative system and the exponential shrinkage is -19.667. That is, in the
dynamical system (2), when t — +o0, each volume containing the dynamical system trajectory shrinks to
zero at an exponential rate of -19.667. The orbit of the dynamical system is ultimately limited to a specific
subset of zero volume, and the asymptotic motion is located on the attractors of the system (2).

2.3 Equilibrium point and stability
Let
a(xy; —x1) +x,=0
X1 —Xp —X1X3+X5 =0

X1X2 - bX3 = O . (4‘)
—X5X3 + dX4 =0
rx; =0

The only equilibrium point E,(0, 0, 0, 0, 0) of system (2) is available. Then the Jacobian matrix of the
system (2) at the equilibrium point E is described as
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