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Abstract: In this paper, the dynamical behaviors and projective synchronization of a five-dimensional 

hyperchaotic Lorenz system are investigated. First of all, a hyperchaotic system is constructed by introducing 

two state variables into the Lorenz chaotic system. Secondly, the dynamical behaviors of the proposed 

system, such as the dissipative property and equilibrium point, are discussed. Thirdly, based on the stability 

theory, the projective synchronization of the systems can be achieved.  Finally, some numerical simulations 

are given to verify the projective synchronization scheme. 
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1 Introduction 

Chaos is a very interesting nonlinear phenomenon. In 1963, Lorenz discovered the famous Lorenz 

chaotic system [1]. After that, chaotic systems have been researched extensively, such as the Lü system [2-

4], the Chen system [5] and the Rössler system [6]. Recently, much work has been done in constructing 

hyperchaotic models [7-9]. However, there is no universal method to get hyperchaotic systems. Compared 

with chaotic systems, hyperchaotic systems must have at least two positive Lyapunov exponents, and the 

dimension must be four or more [10]. Hyperchaotic systems can be obtained by adding one or more state 

variables to a three-dimensional chaotic system [11, 12]. Hyperchaotic systems have more abundant 

dynamical characteristics and complex behaviors than chaotic systems [13, 14]. So they are better suitable 

for some engineering applications, such as chemical reactions, electric circuits [15], cryptography [16, 17], 

fluid dynamics and secure communication [18-20].  

Chaos synchronization is another fascinating concept. Pecora and Carroll proposed a drive-response 

chaotic synchronization scheme in 1990 [21], and realized the synchronization of two chaotic systems in the 

circuit, which promoted the theoretical study of chaotic synchronization and chaos control. Since then, many 

effective chaotic synchronization methods have emerged, such as complete synchronization [22, 23], 

generalized synchronization [24], phase synchronization [25], lag synchronization [26, 27], projective 

synchronization [28], anticipating synchronization [29] and exponential synchronization [30]. In recent 

years, the synchronization of chaotic fractional differential systems [31, 32] has attracted more and more 

attention because of its potential applications in secure communication and control processing [33-35]. 

The research of projection synchronization has received extensive attention from experts at home and 

abroad in recent years. Projection synchronization is that under certain conditions, the output of the coupled 

drive system and the response system state is not only phase locked, but the amplitude of each 

corresponding state also evolves according to a certain scale factor relationship. The method has been 

widely observed and discussed in coupled integer order chaotic systems. 

The other parts of article is organized as follows. In section 2, a new five-dimensional hyperchaotic 

Lorenz system is constructed and the dynamical behaviors of the hyperchaotic system are discussed, such as 

attractor, dissipativity and equilibrium point. In section 3, the projective synchronization scheme of the 

hyperchaotic system is designed and some numerical simulations are completed. In section 4, some 

conclusions are given. 

2 System description 
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2.1 A new hyperchaotic Lorenz system 
The famous Lorenz chaotic system can be represented by the following autonomous differential 

equations 

                                                                        {
ẋ1 = a(x2 − x1)           
ẋ2 = cx1 − x2 − x1x3 
ẋ3 = x1x2 − bx3          

,                                                           (1) 

where 𝑎, 𝑏 and 𝑐 are real constants. When the parameters are chosen as 𝑎 = 10, 𝑏 = 8/3 and 𝑐 = 28, 

the system (1) is chaotic.  

A new five-dimensional system is constructed by adding two variables into Lorenz chaotic system. In 

the first equation of the system (1), x4 is introduced and the rate of change of x4 is  ẋ4 = −x2x3 + dx4. In 

the second equation of the system (1), another state x5 is introduced and the rate of change of x5 is ẋ5 = rx1. 

The new five-dimensional system can be described as 

                                                                        

{
 
 

 
 
ẋ1 = a(x2 − x1) + x4           
ẋ2 = cx1 − x2 − x1x3 + x5 
ẋ3 = x1x2 − bx3                    
ẋ4 = −x2x3 + dx4                 
ẋ5 = rx1                                   

,                                                     (2) 

where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑟 are real constants. When the parameters are chosen as 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28, 𝑑 =
−6 and 𝑟 = −5, the system (2) is hyperchaotic. The chaotic attractors of the system (2) are plotted in Fig. 1 

with the initial state (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 1). 

 

Fig. 1. Chaotic attractors of the system (2) in 2D spaces with 𝑎 = 10, 𝑏 = 8/3, 𝑐 = 28, 𝑑 = −6 and 𝑟 = −5. 

  

2.2 Dissipativity 
The divergence of system (2) is calculated as  

                                                            ∇v =
∂ẋ1

∂x1
+
∂ẋ2

∂x2
+
∂ẋ3

∂x3
+
∂ẋ4

∂x4
+
∂ẋ5

∂x5
= −19.667 .                                     (3) 

When ∇v < 0, the system (2) is a dissipative system and the exponential shrinkage is -19.667. That is, in the 

dynamical system (2), when t → +∞, each volume containing the dynamical system trajectory shrinks to 

zero at an exponential rate of -19.667. The orbit of the dynamical system is ultimately limited to a specific 

subset of zero volume, and the asymptotic motion is located on the attractors of the system (2). 

2.3 Equilibrium point and stability 
Let  

                                                                        

{
 
 

 
 
a(x2 − x1) + x4 = 0          
cx1 − x2 − x1x3 + x5 = 0 
x1x2 − bx3 = 0                   
−x2x3 + dx4 = 0               
rx1 = 0                                 

.                                                       (4) 

The only equilibrium point E0(0, 0, 0, 0, 0) of system (2) is available. Then the Jacobian matrix of the 

system (2) at the equilibrium point E0 is described as 
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