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Abstract: Laguerre wavelet based numerical method is developed for the solution of Abel’s integral 

equations. This method is based on Laguerre wavelets basis. Laguerre wavelet method is then utilized to reduce 

the Abel’s Integral Equations into the solution of algebraic equations. Illustrative examples are shows that the 

validity, efficiency and applicability of the proposed technique. This algorithm provides high accuracy and 

compared with other existing methods.  
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1. Introduction 

Wavelets theory is a relatively new and an emerging tool in applied mathematical research area. It has 

been applied in a wide range of engineering disciplines; particularly, signal analysis for waveform 

representation and segmentations, time-frequency analysis and fast algorithms for easy implementation. 

Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets 

establish a connection with fast numerical algorithms [1, 2]. Since from 1991 the various types of wavelet 

method have been applied for numerical solution of different kinds of integral equation, a detailed survey on 

these papers can be found in [3]. Such as Lepik et al. [3] applied the Haar wavelets. Maleknejad et al. proposed 

Legendre wavelets [4], Rationalized haar wavelet [5], Hermite Cubic splines [6], Coifman wavelet as scaling 

functions [7]. Yousefi et al. [8] have introduced a new CAS wavelet. Shiralashetti and Mundewadi [9] applied 

the Bernoulli wavelet for the numerical solution of Fredholm integral equations.  

Abel’s integral equation finds its applications in various fields of science and engineering. Such as 

microscopy, seismology, semiconductors, scattering theory, heat conduction, metallurgy, fluid flow, chemical 

reactions, plasma diagnostics, X-ray radiography, physical electronics, nuclear physics [10-12]. 

In 1823, Abel, when generalizing the tautochrone problem derived the following equation: 

      ∫  
𝑦(𝑡)

√𝑥−𝑡

𝑥

0
𝑑𝑡 = 𝑓(𝑥),                 0 ≤ 𝑥, 𝑡 ≤ 1                                                      (1.1) 

where f(t) is a known function and y(t) is an unknown function to be determined. This equation is a particular 

case of a linear Volterra integral equation of the first kind. For solving Eq. (1.1) different numerical based 

methods have been developed over the past few years, such as product integration methods [13, 14], collocation 

method [15], homotopy analysis transform method [16]. The generalized Abel’s integral equations on a finite 

segment appeared for the first time in the paper of Zeilon [17]. Baker [18] studied the numerical treatment of 

integral equations. Operational matrix method based on block-pulse functions for singular integral equations 

[19]. Baratella and Orsi [20] applied the product integration to solve the numerical solution of weakly singular 

volterra integral equations. Some of the author’s, have solved for Abel’s integral equations using the wavelet 

based methods, such as Legendre wavelets [21] and Chebyshev wavelets [22]. Shahsavaran et al [23] has 

solved Abel’s integral equation of the first kind using piecewise constant functions and Taylor expansion by 

collocation method. Shiralashetti [24] Theoretical study on continuous polynomial wavelet bases through 

wavelet series collocation method for nonlinear Lane–Emden type equations. Shiralashetti [25] applied the 

Laguerre wavelets collocation method for the numerical solution of the Benjamina–Bona–Mohany equations. 

In this paper, we introduced the Laguerre wavelets based numerical method for solving Abel’s integral 

equations of first and second kind.  

The article is organized as follows: In Section 2, the basic formulation of Laguerre wavelets and the 

function approximation is presented. Section 3 includes the convergence and error analysis. Section 4 is 
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devoted the method of solution. In section 5, numerical results are demonstrated the accuracy of the proposed 

method by some of the illustrative examples. Lastly, the conclusion is given in section 6.  

2. Properties of Laguerre wavelet  

2.1 Wavelets  
In recent years, wavelets have found their way into many different fields of science and engineering. 

Wavelets constitute a family of functions constructed from dialation and translation of a single function called 

mother wavelet. When the dialation parameter 𝑎 and translation parameter 𝑏 varies continuously, we have the 

following family of continuous wavelets:  

𝜓𝑎,𝑏(𝑥) = |𝑎|−1/2𝜓 (
𝑥 − 𝑏

𝑎
) , ∀ 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

If we restrict the parameters a and b to discrete values as 𝑎 = 𝑎0
−𝑘 , 𝑏 = 𝑛𝑏0𝑎0

−𝑘, 𝑎0 > 1, 𝑏0 > 0. We have the 

following family of discrete wavelets  

𝜓𝑘,𝑛(𝑥) = |𝑎|1/2𝜓(𝑎0
𝑘𝑥 − 𝑛𝑏0), ∀ 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0. 

where 𝜓𝑘,𝑛(𝑥)  form a wavelet basis for 𝐿2(𝑅). In particular, when 𝑎0 = 2 𝑎𝑛𝑑 𝑏0 = 1 then 𝜓𝑘,𝑛(𝑥) forms 

an orthonormal basis. 

2.2 Laguerre Wavelets 
Laguerre wavelets 𝜓𝑛,𝑚(𝑥) = 𝜓(𝑘, 𝑛, 𝑚, 𝑥) have four arguments; 𝑛 = 1,2,3, … , 2𝑘−1  , k can assume 

any positive integer, m is the order of the Laguerre polynomials and x is the normalized time. They are defined 

on the interval [0, 1) as: 

𝜓𝑛,𝑚(𝑥) = {
2𝑘/2𝐿̅𝑚(2𝑘𝑥 − 2𝑛 + 1),

𝑛−1

2𝑘−1
 ≤ 𝑥 <  

𝑛

2𝑘−1
,

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
                                 (2.1) 

where 𝐿𝑚
̅̅ ̅̅ (x) = 

𝐿𝑚

𝑚!
, m = 0,1,2,...,M-1. In Eq. (2.1) the coefficients are used for orthonormality.  

Here, 𝐿𝑚(𝑥) are the well-known Laguerre polynomial of order m with respect to the weight function w(x) = 

1 on the interval [0, ∞) and satisfy the following recursive formula, 

𝐿0(𝑥) = 1, 

𝐿1(𝑥) = 1 − 𝑥, 

𝐿𝑚+2(𝑥) =
(2𝑚 + 3 − 𝑥)𝐿𝑚+1(𝑥) − (𝑚 + 1)𝐿𝑚(𝑥)

𝑚 + 2
, 𝑚 = 0,1,2 … 

2.3 Function Approximation 
A function 𝑓(𝑥) defined over [0, 1) can be expanded as a Laguerre wavelet series as follows: 

𝑓(𝑥) = ∑ ∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑥),∞
𝑚=0

∞
𝑛=1  

    (2.2) 

where, 𝐶𝑛,𝑚 denotes inner product of 𝑓(𝑥) and 𝜓𝑛,𝑚(𝑥) 

                     
i.e., 𝐶𝑛,𝑚 = (𝑓(𝑥), 𝜓𝑛,𝑚(𝑥)).                      (2.3) 

If the infinite series in (2.2) is truncated, then (2.2) can be rewritten as: 

𝑓(𝑥) = ∑ ∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑥) = 𝐶𝑇Φ(𝑥),𝑀−1
𝑚=0

2𝑘−1

𝑛=1     (2.4) 

where C and Φ(𝑥) are 2𝑘−1𝑀 × 1  matrices given by: 

C = [c10, c11, … , c1,M−1, c20, … , c2,M−1, … , c2k−1,0, … , c2k−1,M−1]
T

 

     = [c1, c2, … , c2k−1,M]T, 

     (2.5) 

Φ(𝑥) = [𝜓10(𝑥), 𝜓11(𝑥), … , 𝜓1,𝑀−1(𝑥), 𝜓20(𝑥), … , 𝜓2,𝑀−1(𝑥), … , 𝜓2𝑘−1,0(𝑥), … , 𝜓2𝑘−1,𝑀−1(𝑥)]𝑇 

= [𝜓1(𝑥), 𝜓2(𝑥), … , 𝜓2𝑘−1,𝑀(𝑥)]𝑇 .      (2.6) 


