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Abstract: Accurate diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive 

impairment (MCI) is very important for patients and clinicians. There are many useful medical data have 

been discovered to be remarkable for diagnosis i.e., structural MR imaging (MRI), functional imaging (e.g., 

FDG-PET and FIB-PET). Multimodal classification model is needed to combine these biomarkers to improve 

the diagnose performance. Some methods have been proposed such as linear mixed kernel, combined 

embedding and nonlinear graph fusion. These methods have efficiently employed the multimodal data, but 

they ignore the influence of noise and outliers. Noise is easily generated in image analysis and measurement. 

To enhance robustness, mixture distributions were applied in nonlinear regression models. Gaussian mixture 

model is successfully applied in many domains. In this paper, we generalize nonlinear multimodal 

classification model based on GMM. The performance on real dataset: 22 AD, 23 MCI and 25 NC (health) is 

comparable to other methods. 
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1. Introduction 

Alzheimer's disease (AD) is the most common form of dementia in elderly people. AD greatly affects 

the cognitive ability of the elderly [1]. Thus, it is important to diagnose AD as soon as possible from its 

early stage mild cognitive impairment MCI. In the clinic, many medical images and biological indicators are 

used for diagnosis. Such as MRI (MR image) [2], functional imaging (FDG-PET, FIB-PET) [3] and 

quantification of specific proteins measured through CSF [2].  

Different biomarkers can contain different feature of AD patient, thus may provide complementary 

information for diagnosis [4-6]. In [5, 7], linear mixed kernel is proposed independently. Paper [5] learn the 

kernel weight by grid search while paper [7] take the kernel weight as model parameter and learn it by 

optimization. Similarities from multiple modalities are combined to generate an embedding, which contain 

information of multimodal data [6]. In paper [4], similarity matrix for classification is calculated by 

nonlinear graph fusion. In this paper, kernel method is also used for multimodal data, and the construction 

of the combined kernel matrix is the same as the mixed kernel of paper [5]. 

After the construction of the mixed kernel, which contains sample information completely, efficient 

classification is needed. There are many classification models have been proposed such as logistic 

regression, k-nearest neighbor, naïve bayes, decision tree, SVM [8-10] and so on. However, most of those 

classification models do not model the noise directly except support vector machine. Support vector 

machine model the noises and outliers with the slack variable. In SVM, the input data is mapped into a 

higher dimensional space to make it separable. SVM can solve two-class classification, and the goal is to 

maximize the decision bound. This method is totally influenced by the support vectors on the decision 

bound, if most of those support vectors are polluted by noises, the model will be not proper enough. 

Therefore, the slack variable is proposed to make the decision bound more robust. Kernel method is 

improved to deal with the nonlinear case. 

Based on the traditional SVM, Least-Squares SVM (LSSVM) [11] is proposed. The LSSVM changes 

the equality constraint in SVM to the inequality constraint. As a result, the convex quadratic programming is 

replaced to convex linear problem. In Least-Squares SVM, the slack variables are proportional to the errors. 

Mixture models are successfully applied in many domains due to their excellent robustness. In paper 

[12, 13], mixture of t and skew normal distribution is applied separately to fit the noise term in the linear 
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regression model. In [14, 15], Gaussian mixture models (GMMs) based classification models are applied in 

medical research. Paper [16] uses the Gaussian mixture models (GMMs) for multiple limb motion 

classification using continuous myoelectric signals. Besides, mixture model applied in machine learning 

[17]. 

In real world, the data is usually polluted by outliers and heavy-tailed noises, the slack variable in 

Least-Squares SVM can’t be well characterized. In this paper, we develop a nonlinear classification model 

while the feature of noise is fitted by Gaussian mixture model (GMM). The linear mixed kernel method is 

employed which contains the multimodal data. In order to get the optimal parameter, EM algorithm and 

Lagrange multiplier method are applied. The experiment results are comparable to other multimodal-based 

classification methods. 

2. Methodology 

2.1 Nonlinear classification model 

Given the training set {(𝒙𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where 𝒙𝑖 ∈ 𝑅

𝑑 is the input data , 𝑦𝑖 ∈ {−1，1} is the label. The 

objective function of support vector machine is: 

                                                           𝑓(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑖𝑘(𝑥𝑖, 𝑥)
𝑛
𝑖=1 + 𝑏]                                                     (1) 

where 𝛼𝑖 is the parameter of Lagrange multiplier method, 𝑘(𝑥𝑖 , 𝑥) is the kernel function, 𝑏 is the bias.  

Assuming that  

{
𝝎𝑇𝜙(𝒙𝑖) + 𝑏 = 1 − 𝑒𝑖
𝝎𝑇𝜙(𝒙𝑖) + 𝑏 = −1 + 𝑒𝑖

 

then, we have 

(𝝎𝑇𝜙(𝒙𝑖) + 𝑏)𝑦𝑖 = 1 − 𝑒𝑖,  𝑖 = 1,2,⋯ , 𝑛 

where 𝜙(⋅)is the map function, 𝑒𝑖 is the error. 

The objective function of SVM is: 
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                                                                   𝑠. 𝑡.  𝑮𝑇𝝎+ 𝑏𝒚 = 𝟏𝑛 − 𝒆                                                          (2) 

where 𝑮 = (𝑦1𝜙(𝑥1), 𝑦2𝜙(𝑥2),… , 𝑦𝑛𝜙(𝑥𝑛)) ∈ 𝑅
𝑑 × 𝑛 , 𝒆 = (𝑒1, 𝑒2, … , 𝑒𝑛) is the error, 𝛾  is a regularized 

parameter. 

2.2 GMM based nonlinear classification model 

Gaussian mixture model: 

                                                                   𝑝(𝑒) = ∑ 𝜋𝑘𝑁(𝑒|0, 𝜎𝑘
2)𝐾

𝑘=1                                                         (3) 

where K is the number of independent Gaussian distribution in GMM model. 𝑁(𝑒|0, 𝜎𝑘
2) is the Gaussian 

distribution with zero mean, variance 𝜎𝑘
2, 𝜋𝑘 is the weight coefficient that satisfied: ∑ 𝜋𝑘 = 1, 𝜋𝑘 ≥ 0𝐾

𝑘=1 . 

Theoretically, we need to define the form of the map function 𝜙(𝑥) in advance. However, this will 

increase the number of coefficient and computation complexity, in the same time, choosing a mapping 

function is complicated. Similar to LS-SVM, we will use the Lagrange multiplier method in the optimize 

step. So the map function always appears as 𝜙(𝑥)𝑇𝜙(𝑥). Therefore, we can introduce kernel function 

𝑘(𝑥, 𝑦) = 𝜙(𝑥)𝑇𝜙(𝑦). In this paper, RBF kernel is employed: 

                                                                     𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝( −
‖𝑥−𝑦‖2

2𝜎2
)                                                        (4) 

The optimal values of parameter can be obtained by maximum likelihood estimation, the likelihood 

function of 𝑒 can be expressed as: 

                                                   𝑝(𝑒|𝛩) = ∏ 𝑝(𝑒𝑖|𝛩)
𝑛
𝑖=1 = ∏ ∑ 𝜋𝑘𝑁(0, 𝜎𝑘

2)𝐾
𝑘=1

𝑛
𝑖=1                                    (5) 

where 𝛩 is the parameter set. Then the log-likelihood function is calculated as: 

                                          𝐿(𝑒|𝛩) = ∑ 𝑙𝑜𝑔 𝑝 (𝑒𝑖|𝛩)
𝑛
𝑖=1 = ∑ (𝑙𝑜𝑔∑ 𝜋𝑘𝑁(0, 𝜎𝑘

2)𝐾
𝑘=1 )𝑛

𝑖=1                              (6) 

Due to the complex expression of log-likelihood function, it is difficult to calculate directly. The EM 

algorithm is an efficient algorithm to solve such problems. 

In order to simplify the solution process, we introduce 𝒁 = (𝑧1, 𝑧2, … , 𝑧𝑛)
𝑇 , where 𝑧𝑖 =

(𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝐾) is an indicator vector, if 𝑒𝑖 comes from the 𝑗th component, then 𝑧𝑖𝑗 = 1 the other elements 

of 𝑧𝑖 are 0. So ∑ 𝑧𝑖𝑘 = 1
𝐾
𝑘=1 , ∑ ∑ 𝑧𝑖𝑘 = 1

𝐾
𝑘=1

𝑛
𝑖=1 . 

𝑧𝑖 obeys multi-point distribution: 


