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Abstract: Some techniques are available to solve numerically higher order boundary value problems. The 

aim of this paper is to apply Galerkin weighted residual method (GWRM) for solving eleventh order linear 

and nonlinear boundary value problems. Using GWRM, approximate solutions of eleventh-order boundary 

value problems are developed. This approach provides the solution in terms of a convergent series. 

Approximate results are given for several examples to illustrate the implementation and accuracy of the 

method. The results are depicted both graphically and numerically. All results are compared with the 

analytical solutions to show the convergence of the proposed algorithm. It is observed that the present 

method is a more effective tool and yields better results. All problems are computed using the software 

MATLAB R2017a. 
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1. Introduction 

Higher order boundary value problems (BVPs) occur in the study of fluid dynamics, astrophysics, 
hydrodynamic, hydro magnetic stability, astronomy, beam and long wave theory, induction motors, 

engineering, and applied physics. The boundary value problems of higher order have been examined due to 

their mathematical importance and applications in diversified applied sciences [1-2]. Twizell et al [3] 
developed numerical methods for eight, tenth and twelfth order eigenvalue problems arising in thermal 

instability. Scott and Watts [4] developed a numerical method for the solution of linear BVPs using a 

combination of superposition and orthonormalization. Siddiqi et al [5] used Variational iteration technique 
to obtain numerical approximations for eleventh-order BVPs by converting the original problem into a 

system of integral equations. Very recently Amjad Hussain et al [6] derived the numerical solutions of 

eleventh-order BVPs using differential transformation method. Siddiqi and Ghazala [7-10] presented the 
solutions of eight, tenth and twelfth order boundary value problems using spline and Non-polynomial spline. 

In the present paper, the eleventh order boundary value problems are solved using the Galerkin 

weighted residual method. The problem has the following form: 

𝑐11
𝑑11𝑢

𝑑𝑥11
+ 𝑐10

𝑑10𝑢

𝑑𝑥10
+ 𝑐9

𝑑9𝑢

𝑑𝑥9
+ 𝑐8

𝑑8𝑢

𝑑𝑥8
+ 𝑐7

𝑑7𝑢

𝑑𝑥7
+ 𝑐6

𝑑6𝑢

𝑑𝑥6
+ 𝑐5

𝑑5𝑢

𝑑𝑥5
+ 𝑐4

𝑑4𝑢

𝑑𝑥4
+ 𝑐3

𝑑3𝑢

𝑑𝑥3
+ 𝑐2

𝑑2𝑢

𝑑𝑥2
+ 𝑐1

𝑑𝑢

𝑑𝑥
+ 𝑐0𝑢 = 𝑟, 𝑎 < 𝑥 <

𝑏                                                                                                                                                                                      (1a) 

subject to the following boundary conditions: 
𝑢(a) = A0, 𝑢(𝑏) = B0, 𝑢′(𝑎) = A1, 𝑢′(𝑏) = B1, 𝑢′′(𝑎) = A2, 𝑢′′(𝑏) = B2, 𝑢′′′(𝑎) = A3,  
𝑢′′′(𝑏) = B3,   𝑢(𝑖𝑣)(𝑎) = A4,   𝑢(𝑖𝑣)(𝑏) = B4,   𝑢(𝑣)(𝑎) = A5                                                                                      (1b) 

Where A𝑖 , 𝑖 = 0,1,2,3,4,5 and  B𝑗 , 𝑗 = 0,1,2,3,4  are finite real constants and c𝑖 , 𝑖 = 0,1, … ,11 and  𝑟 are all 

continuous and differentiable functions of  𝑥 defined on the interval [a, b]. 

The paper is organized in four sections. In section 2, we give a short description on Bezier 
polynomials. The analysis of Galerkin weighted residual method is discussed in section 3. In section 4, three 

numerical examples are presented to assess the efficiency of the Galerkin weighted residual technique.  

2. Bezier Polynomials  

The general form of the Bezier polynomials of nth degree over the interval [0, 1] is defined by 

𝐵𝑗,𝑛(𝑥) = ∑ (𝑛
𝑗
)𝑛

𝑗=0 𝑥 𝑗(1 − 𝑥)𝑛−𝑗𝑃𝑗 , 0 ≤ 𝑥 ≤ 1  
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Where the binomial coefficients are given by  

(𝑛
𝑗
) =

𝑛!

(𝑛−𝑗)!𝑗!
  

The points  𝑃𝑗   are called control points for the Bezier curve.  

We write first few Bezier polynomials over the interval [0,1]: 
𝐵0(𝑥) = (1 − 𝑥)19，𝐵1(𝑥) = 19(1 − 𝑥)18𝑥 , 𝐵2(𝑥) = 171(1 − 𝑥)17𝑥2 , 𝐵3(𝑥) = 969(1 − 𝑥)16𝑥3  
𝐵4(𝑥) = 3876(1 − 𝑥)15𝑥4, 𝐵5(𝑥) = 11628(1 − 𝑥)14𝑥5,𝐵6(𝑥) = 27132(1 − 𝑥)13𝑥6,𝐵7(𝑥) = 50388(1 − 𝑥)12𝑥7 

𝐵8(𝑥) = 75582(1 − 𝑥)11𝑥8, 𝐵9(𝑥) = 92378(1 − 𝑥)10𝑥9, 𝐵10(𝑥) = 92378(1 − 𝑥)9𝑥10,𝐵11(𝑥) = 3876(1 − 𝑥)8𝑥11 

𝐵12(𝑥) = 75582(1 − 𝑥)7𝑥12, 𝐵13(𝑥) = 27132(1 − 𝑥)6𝑥13,𝐵14(𝑥) = 11628(1 − 𝑥)5𝑥14,𝐵15(𝑥) = 3876(1 − 𝑥)4𝑥15 

𝐵16(𝑥) = 969(1 − 𝑥)3𝑥16, 𝐵17(𝑥) = 171(1 − 𝑥)2𝑥17, 𝐵18(𝑥) = 19(1 − 𝑥)𝑥18, 𝐵19(𝑥) = 𝑥19 

Note that each of these 𝑛 + 1 polynomials having degree 𝑛 satisfies the following properties: 

(i) 𝐵𝑗,𝑛(𝑥) = 0  if  𝑗 < 0 or  𝑗 > 𝑛 

(ii) ∑ 𝐵𝑗,𝑛(𝑥) = 1𝑛
𝑗=0  

(iii) 𝐵𝑗,𝑛(𝑎) = 𝐵𝑗,𝑛(𝑏) = 0, 𝑗 = 1,2, … , 𝑛 − 1 

For these properties, Bezier polynomials are used in the trail functions satisfying the corresponding 
homogeneous form of the essential boundary conditions in the Galerkin weighted residual method to solve a 

BVP. 

3. Matrix Formulation of Eleventh-order BVPs  

In this section, we first derived the matrix formulation for eleventh-order linear BVP and then we 
extend our idea for solving nonlinear BVP. To solve the boundary value problem (1) by the Galerkin 

weighted residual method we approximate  𝑢̃(𝑥) as  
𝑢̃(𝑥) = 𝜃0(𝑥) + ∑ β𝑖

𝑛−1
𝑖=1 𝐵𝑖(𝑥) , 𝑛 ≥ 2                                                                                                                            (2) 

Here  𝜃0(𝑥)  is specified by the essential boundary conditions and   𝐵𝑖 (a) =  𝐵𝑖(𝑏) = 0 , for each  𝑖 =
 1,2,3, … , 𝑛 − 1.  

Using (2) into (1), the Galerkin weighted residual equations are: 

∫ [𝑐11
𝑑11𝑢̃

𝑑𝑥11 + 𝑐10
𝑑10𝑢̃

𝑑𝑥10 + 𝑐9
𝑑9𝑢̃

𝑑𝑥9 + 𝑐8
𝑑8𝑢̃

𝑑𝑥8 + 𝑐7
𝑑7𝑢̃

𝑑𝑥7 + 𝑐6
𝑑6𝑢̃

𝑑𝑥6 + 𝑐5
𝑑5𝑢̃

𝑑𝑥5 + 𝑐4
𝑑4𝑢̃

𝑑𝑥4 + 𝑐3
𝑑3𝑢̃

𝑑𝑥3 + 𝑐2
𝑑2𝑢̃

𝑑𝑥2 + 𝑐1
𝑑𝑢̃

𝑑𝑥
+ 𝑐0 𝑢̃ − 𝑟] 𝐵𝑗 (𝑥)𝑑𝑥 = 0,

𝑏

a
  𝑗 = 1,2, . . , 𝑛 − 1            (3) 

Integrating by parts the terms up to second derivative on the left hand side of (3), we get  

∫ 𝑐11
𝑑11𝑢

𝑑𝑥11
𝐵𝑗(𝑥)𝑑𝑥 = − [

𝑑

𝑑𝑥
[𝑐11𝐵𝑗(𝑥)]

𝑑9𝑢

𝑑𝑥9
]

a

𝑏
𝑏

a
 + [

𝑑2

𝑑𝑥2
[𝑐11𝐵𝑗(𝑥)]

𝑑8𝑢̃

𝑑𝑥8
]

a

𝑏

− [
𝑑3

𝑑𝑥3
[𝑐11𝐵𝑗(𝑥)]

𝑑7𝑢

𝑑𝑥7
]

a

𝑏

  

+ [
𝑑4

𝑑𝑥4
[𝑐11𝐵𝑗(𝑥)]

𝑑6𝑢

𝑑𝑥6
]

a

𝑏

− [
𝑑5

𝑑𝑥5
[𝑐11𝐵𝑗(𝑥)]

𝑑5𝑢

𝑑𝑥4
]

a

𝑏

+ [
𝑑6

𝑑𝑥6
[𝑐11𝐵𝑗(𝑥)]

𝑑4𝑢

𝑑𝑥4
]

a

𝑏

 − [
𝑑7

𝑑𝑥7
[𝑐11𝐵𝑗(𝑥)]

𝑑3𝑢

𝑑𝑥3
]

a

𝑏

  

+ [
𝑑8

𝑑𝑥8
[𝑐11𝐵𝑗(𝑥)]

𝑑2𝑢

𝑑𝑥2
]

a

𝑏

− [
𝑑9

𝑑𝑥9
[𝑐11𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
]

a

𝑏

+ ∫
𝑑10

𝑑𝑥10
[𝑐11𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝑏

a
                                                  (4) 

∫ 𝑐10
𝑑10𝑢

𝑑𝑥10
𝐵𝑗(𝑥)𝑑𝑥 =

𝑏

a
− [

𝑑

𝑑𝑥
[𝑐10𝐵𝑗(𝑥)]

𝑑8𝑢

𝑑𝑥8
]

a

𝑏

+ [
𝑑2

𝑑𝑥2
[𝑐10𝐵𝑗(𝑥)]

𝑑7𝑢̃

𝑑𝑥7
]

a

𝑏

− [
𝑑3

𝑑𝑥3
[𝑐10𝐵𝑗(𝑥)]

𝑑6𝑢

𝑑𝑥6
]

a

𝑏

  

+ [
𝑑4

𝑑𝑥4
[𝑐10𝐵𝑗(𝑥)]

𝑑5𝑢

𝑑𝑥5
]

a

𝑏

− [
𝑑5

𝑑𝑥5
[𝑐10𝐵𝑗(𝑥)]

𝑑4𝑢

𝑑𝑥4
]

a

𝑏

+ [
𝑑6

𝑑𝑥6
[𝑐10𝐵𝑗(𝑥)]

𝑑3𝑢

𝑑𝑥3
]

a

𝑏

 − [
𝑑7

𝑑𝑥7
[𝑐10𝐵𝑗(𝑥)]

𝑑2𝑢

𝑑𝑥2
]

a

𝑏

 

+ [
𝑑8

𝑑𝑥8
[𝑐10𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
]

a

𝑏

− ∫
𝑑9

𝑑𝑥9
[𝑐10𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝑏

a
                                                  (5) 

 

∫ 𝑐9
𝑑9𝑢̃

𝑑𝑥9
𝐵𝑗(𝑥)𝑑𝑥 = − [

𝑑

𝑑𝑥
[𝑐9𝐵𝑗(𝑥)]

𝑑7𝑢̃

𝑑𝑥7
]

a

𝑏

+ [
𝑑2

𝑑𝑥2
[𝑐9𝐵𝑗(𝑥)]

𝑑6𝑢̃

𝑑𝑥6
]

a

𝑏
𝑏

a
 − [

𝑑3

𝑑𝑥3
[𝑐9𝐵𝑗(𝑥)]

𝑑5𝑢

𝑑𝑥5
]

a

𝑏

  

+ [
𝑑4

𝑑𝑥4
[𝑐9𝐵𝑗(𝑥)]

𝑑4𝑢

𝑑𝑥4
]

a

𝑏

− [
𝑑5

𝑑𝑥5
[𝑐9𝐵𝑗(𝑥)]

𝑑3𝑢

𝑑𝑥3
]

a

𝑏

 + [
𝑑6

𝑑𝑥6
[𝑐9𝐵𝑗(𝑥)]

𝑑2𝑢̃

𝑑𝑥2
]

a

𝑏

− [
𝑑7

𝑑𝑥7
[𝑐9𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
]

a

𝑏

 

+ ∫
𝑑8

𝑑𝑥8
[𝑐9𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝑏

a
                                                                                                                                                   (6) 

 

∫ 𝑐8
𝑑8𝑢

𝑑𝑥8
𝐵𝑗(𝑥)𝑑𝑥 = − [

𝑑

𝑑𝑥
[𝑐8𝐵𝑗(𝑥)]

𝑑6𝑢̃

𝑑𝑥6
]

a

𝑏

+ [
𝑑2

𝑑𝑥2
[𝑐8𝐵𝑗(𝑥)]

𝑑5𝑢

𝑑𝑥5
]

a

𝑏
𝑏

a
 − [

𝑑3

𝑑𝑥3
[𝑐8𝐵𝑗(𝑥)]

𝑑4𝑢

𝑑𝑥4
]

a

𝑏

  

+ [
𝑑4

𝑑𝑥4
[𝑐8𝐵𝑗(𝑥)]

𝑑3𝑢̃

𝑑𝑥3
]

a

𝑏

− [
𝑑5

𝑑𝑥5
[𝑐8𝐵𝑗(𝑥)]

𝑑2𝑢

𝑑𝑥2
]

a

𝑏

+ [
𝑑6

𝑑𝑥6
[𝑐8𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
]

a

𝑏

− ∫
𝑑7

𝑑𝑥7
[𝑐8𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝑏

a
                                     (7) 

 

∫ 𝑐7
𝑑7𝑢

𝑑𝑥7
𝐵𝑗(𝑥)𝑑𝑥 = − [

𝑑

𝑑𝑥
[𝑐7𝐵𝑗(𝑥)]

𝑑5𝑢̃

𝑑𝑥5
]

a

𝑏

+ [
𝑑2

𝑑𝑥2
[𝑐7𝐵𝑗(𝑥)]

𝑑4𝑢

𝑑𝑥4
]

a

𝑏
𝑏

a
 − [

𝑑3

𝑑𝑥3
[𝑐7𝐵𝑗(𝑥)]

𝑑3𝑢

𝑑𝑥3
]

a

𝑏

  

+ [
𝑑4

𝑑𝑥4
[𝑐7𝐵𝑗(𝑥)]

𝑑2𝑢̃

𝑑𝑥2
]

a

𝑏

− [
𝑑5

𝑑𝑥5
[𝑐7𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
]

a

𝑏

+ ∫
𝑑6

𝑑𝑥6
[𝑐7𝐵𝑗(𝑥)]

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝑏

a
                                                                          (8) 


