
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 

Vol. 16, No. 1, 2021, pp.024-032 

 

 
 

 

 

Projective synchronization of fractional order hyperchaotic 

systems based on matrix decomposing 

Li Xin1, Xuerong Shi2*, Zuolei Wang2, Mingjie Xu3 
1School of Information Engineering, Yancheng Teachers University, 

Yancheng, 224002, China 
2School of Mathematics and Statistics, Yancheng Teachers University, 

 Yancheng, 224002, China 
3School of Electronic Information, Jiangsu University of Science and Technology, 

Zhenjiang, 212000, China 

(Received January 12, 2021, accepted February 27, 2021) 

Abstract: Dynamic behavior of the fractional order hyperchaotic Chen system is discussed. According to 

linear system stability judgment method, general projective synchronization method of hyperchaotic system 

with fractional order is introduced. By constructing constant full rank matrix, via designing response system, 

projective synchronization between it and the corresponding drive system can be achieved along with 

sufficient conditions being obtained. The proposed scheme is simple and easy to be implemented. To verify 

the effectiveness of the addressed method, numerical simulations are demonstrated. 
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1. Introduction 

After Carroll and Pecora put forward the conception of chaotic synchronization [1], people have 
carried on much research on chaotic synchronization. Various synchronization methods have been proposed. 

For example, generalized synchronization [2,3], complete synchronization [4,5], lag synchronization [6,7], 

Q-S synchronization [8], phase synchronization [9,10], prediction and lag synchronization [11,12]. In 1999, 
Mainieri et al. observed a novel type of chaos synchronization, namely projective synchronization [13]. 

Since then, projective synchronization has attracted people's attention. Examples are given as follows. In 

Ref. [14], a scheme about secure communication on the basis of projective synchronization was mentioned. 
Projective synchronization relative to complicated factors was discussed in Ref. [15]. 

Recently, the research on fractional calculus has attracted great attention. So far, there have been 

many fractional order synchronization methods. Here are some examples. Fractional order synchronization 
conditions for two Lü systems were calculated [16]; By using linear control strategy, synchronization for 

fractional systems with time delayed was proposed [17]; Active control method was presented to realize 

fractional chaotic synchronization [18]; Qin et al. introduced an adaptive fuzzy controller and realized the 
synchronization of uncertain systems, which were fractional order systems with time delay [19]. Control and 

synchronization for unknown chaotic systems was proposed by utilizing adaptive back stepping tactics, in 

which fractional order system was used [20]. A nonlinear disturbance observer was explored on the basis of 
adaptive sliding mode control scheme [21]. Existing results suggested that fractional order nonlinear system 

can show richer dynamics and reflect more systematic engineering physics phenomena compared with 

integer order system. Therefore, it has wider range of applications. 
In the last few years, various results regarding fractional order projective synchronization have been 

considered. Lag projective synchronization was obtained by utilizing compared principle for linear 
fractional order equation with time delayed [22]. Modified projective synchronization was described for 

chaotic systems in the presence of different dimensions [23].  Combination projective synchronization was 

discussed, which was divided into matrix form and inverse matrix form. When scaling factor was a constant 
full rank matrix, these two synchronization methods can be realized [24]. A robust control method for two 

different chaotic systems with external disturbances was designed to realize modified function projective 
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synchronization [25]. Nowadays, Chaos synchronization has been used in many fields, such as image 
encryption [26-28], parameter estimation [29], secure communications [30,31], electrical circuits systems 

[32], physics and engineering sciences [33-35]. 

Other parts of this manuscript are arranged as follows. Definitions and predictor-corrector algorithm 
are introduced in section 2. In section 3, main results are depicted. Firstly, general projective 

synchronization scheme for hyperchaotic systems is presented. Secondly, dynamic behavior about fractional 

hyperchaotic Chen system is discussed. Thirdly, the proposed scheme was verified through numerical 
simulations. Conclusions are depicted in section 4. 

2. Definitions and algorithm 

In this part, definitions and algorithm are introduced. 

2.1 Definitions 
According to different research backgrounds, three definitions about fractional order derivative are 

introduced. They are Riemann-Liouville, Caputo and Grünwald-Letnikov definitions.  

Definition 1([36]) Riemann-Liouville definition of function 𝑓(𝑡) is described as 
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Where 𝛼 is fractional number that satisfies 𝑚 − 1 < 𝛼 < 𝑚 with 𝑚 ∈ 𝑁 and 𝛤(⋅)is the Gamma function.  

Definition 2 ([36]) Caputo definition of function 𝑓(𝑡) is described as  
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where 𝛼 is fractional number satisfying 𝑚− 1 < 𝛼 < 𝑚 with 𝑚 ∈ 𝑁. 𝛤(⋅)is the Gamma function.  

Definition 3([36]) Grünwald-Letnikov definition of function 𝑓(𝑡) is described as 
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Formula (4) can be rewritten as 
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Aforementioned definitions about fractional order derivatives have their own features. The Riemann-

Liouville definition has good mathematical properties, but it is subject to many restrictions in engineering 
applications. Although the definition of Caputo has a clearer physical meaning in engineering applications, 

it is more difficult to perform discrete calculations on fractional calculus. The Grünwald-Letnikov definition 

is easy to discretize and is convenient for numerical operations. For some functions, above three different 
forms of fractional order derivative definitions are equivalent and can be mutually used. In this manuscript, 

the Caputo definition is utilized. 

2.2 Algorithm 
Predictor-corrector algorithm is a typical method of solving fractional differential equations and 

tonltiterm equations[37]. Differential equation can be discretized based on the following algorithm to get 

numerical solution. 
Consider the following equation 
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, 𝑡𝑛 = 𝑛ℎ, 𝑛 = 0,1⋯ ,𝑁 ∈ 𝑍+  performing Adams-Bashforth estimation on formula (7), we can 

obtain the estimation formula as 
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Where 


