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Abstract: In this paper, we propose a meshless method for option pricing which uses the radial basis 

quasi-interpolation method to solve the Black-Scholes equation. The quasi-interpolation operator is used to 

force the first and second derivatives of stock prices in spatial direction and the forward difference method is 

used in time direction. Its convergence of order 𝑂 (Δ𝑡 + ℎ
2

3) in  𝑙∞ −norm is also derived in the paper. The 

advantage of this method is that it can fit the scattered data well, which makes it be a good approximation 

method for the option prices that fluctuate randomly. The feasibility of the proposed method is verified by 

numerical examples of uniform points and scattered points. The results show that this method has a good 

fitting effect on option prices. 
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1. Introduction 

Black-Scholes model is an important milestone in modern finance. It was developed by Black and 

Scholes in 1973 [1]. Their pricing theory has a very close connection with the actual operation of the 

financial market and has been directly applied to the practice of financial transactions, which greatly 

promotes the rapid development of the global derivative financial market. 

With the deepening of option pricing theory, on the basis of Black-Scholes model, scholars put 

forward Merton model [2], Heston model [3] and Bates model [4] to improve the theory of option pricing 

model. The numerical methods of option pricing mainly include Monte Carlo method [5], binary tree 

method [错误!未找到引用源。], finite difference method [7-10], radial basis function method [错误!未找

到引用源。] and so on. Boyle [5] proposed the Monte Carlo simulation method for option pricing for the 

first time. He used the idea of Monte Carlo simulation to simulate the movement trajectory of stock price 

through random path and obtain option price through risk-free interest rate discount, but the effect was not 

very good. Brenna and Schwartz [7] applied the finite difference method to option pricing for the first time, 

and proposed an implicit difference method to price American options in the jump process. Cox and Ross et. 

al [6] obtained the numerical solution of American option price by using the binary tree method. This 

method is simple and intuitive, but the convergence speed is very slow. Andreasen and Andreasen [13] 

proposed an unconditionally stable alternative direction implicit operator splitting method with second-order 

accuracy for the European option problem, and applied fast Fourier transform to solve the algebraic system 

generated discretely, which greatly reduced the calculation time. Zhao and Davison [8] proposed a compact 

difference scheme for option pricing, which achieved higher accuracy. Cen and Le [9] presented robust 

finite difference methods for European and American option pricing. Kwon and Lee [10]  proposed a time 

discrete-time method for implicit Crank-Nicolson with jump-diffusion model, in which the integral operator 

in the model was approximated by numerical quadrilles. Guo and Wang [14] proposed an unconditionally 

stable time splitting method for the nonlinear Black-Sholes equation, and proved the stability, positivity and 

convergence of the system. Patel and Mehta [11]  proposed a high-order compacted difference scheme for 

solving the Black-Scholes equation based on polynomial interpolation, and compared the errors in Grank-

Nicolson scheme, forward difference scheme and backward difference scheme in the time direction. They 

 
1 Corresponding Author E-mail: wangjialing@nuist.edu.cn 



Jialing Wang et al.: A Quasi-Radial Basis Function Method for European Option Pricing 

 

 

92 

proposed that under a larger time step, the three compact schemes converge to the same precision. Company 

and Egorova et. al [12] studied the high-dimensional American option pricing problem based on the local 

radial basis function method and demonstrated the reliability of the method.  More articles on option pricing 

refer to [15-错误!未找到引用源。]. 

Radial basis function (RBF) interpolation is a real meshless computing method, which does not need 

to generate regular meshes like the finite difference method. Based on this, we can simulate the solution of 

Black-Scholes equation at randomly generated points, which can get a better approximation of the actual 

option price.  Three different multiquadric quasi-interpolations were constructed according to whether they 

are linear or depend on the derivative at the extreme value by Beaston and Powell [18], denoted as LA, LB, 

LC. Then Wu and Schaback [19] proposed the quasi-interpolation operator LD which was proved to be 

llinear and doesn't depend on the derivative at the extreme value. Wu and Chen [20] constructed a special 

operator LD on this basis. More details on radial basis quasi-interpolation methods can be found in [21-24]. 

In this paper, the radial basis quasi-interpolation method is used to solve the Black-Scholes equation, which 

overcomes the disadvantage of the large number of conditions caused by the radial basis function 

interpolation, and also has a good fitting effect for solving partial differential equations. 

The remaining work of this paper is as follows. In Section 2, multiquadric (MQ) quasi-interpolation 

operator and the Black-Scholes equation are introduced. In Section 3, the numerical scheme for solving 

European options with MQ quasi-interpolation operator and the convergence of the scheme are given. The 

results of numerical experiments are presented in Section 4. The conclusions are given in section 5. 

2. Preliminarie 

2.1   The Black-Scholes equation 

In this paper, we consider the Black-Scholes equation  

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 + (𝑟 −
1

2
𝜎2)

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0, (𝑆, 𝑡)𝜖[0, +∞) × [0, 𝑇],                             (2.1) 

𝑉(𝑆, 𝑇) = {
max (𝑆 − 𝐾, 0)   (𝑓𝑜𝑟 𝑐𝑎𝑙𝑙),

max (𝐾 − 𝑆, 0)    (𝑓𝑜𝑟 𝑝𝑢𝑡),
                                                             (2.2) 

 where 𝑉 is the value of European option with the strike 𝐾 and expiry date 𝑇, 𝑆 is the price of stock, 𝑟 is the 

risk-free rate, 𝜎 is the volatility. By using the algebraic transformation 𝜏 = 𝑇 − 𝑡, 𝑥 = 𝑙𝑛𝑆 and 𝑢(𝑥, 𝜏) =
𝑉(𝑥, 𝑡), we can get the new form of the Black-Scholes equation 

𝜕𝑢

𝜕𝜏
−

1

2
𝜎2 𝜕2𝑢

𝜕𝑥2 − (𝑟 −
1

2
𝜎2)

𝜕𝑢

𝜕𝑥
+ 𝑟𝑢 = 0,               (𝑥, 𝜏)𝜖(−∞, +∞) × (0, 𝑇],                             (2.3) 

𝑉(𝑆, 0) = {
max (𝑒𝑥 − 𝐾, 0)   (𝑓𝑜𝑟 𝑐𝑎𝑙𝑙),

max (𝐾 − 𝑒𝑥, 0)    (𝑓𝑜𝑟 𝑝𝑢𝑡).
                                                             (2.4) 

The solution 𝑉(𝑆, 𝑡) of the Black-Scholes equation (2.3) with the initial value (2.4) is 

𝑢(𝑆, 𝜏) = {
𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟𝜏𝑁(𝑑2)          (𝑓𝑜𝑟  𝑐𝑎𝑙𝑙),

𝐾𝑒−𝑟𝜏𝑁(−𝑑2) − 𝑆𝑁(−𝑑1)  (𝑓𝑜𝑟 𝑝𝑢𝑡),
 

where  

𝑑1 =
𝑙𝑛

𝑆
𝐾

+ (𝑟 +
1
2

𝜎2)𝜏

𝜎√𝜏
,   𝑑2 = 𝑑1 − 𝜎√𝜏. 

2.2  MQ quasi-interpolation 

In this paper, we choose the MQ quasi-interpolation operator proposed by Wu and Chen [20] to 

approximate f. 

Given the points (𝑥𝑗, 𝑓𝑗), {𝑓 = 𝑓(𝑥𝑗), 𝑗 = 0,1, … , 𝑚,  𝑥0 < 𝑥1 < ⋯ < 𝑥𝑚  } , the MQ quasi-

interpolation is defined as 

𝑓∗(𝑥) = ∑ 𝑓𝑗𝛹𝑗(𝑥)
𝑚

𝑗=0
,                                                                      (2.5) 

where 
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𝛹𝑗(𝑥) =
𝜙𝑗+1(𝑥) − 𝜙𝑗(𝑥)

2(𝑥𝑗+1 − 𝑥𝑗)
−

𝜙𝑗(𝑥) − 𝜙𝑗−1(𝑥)

2(𝑥𝑗 − 𝑥𝑗−1)
, 

 

𝜙𝑗(𝑥) = √(𝑥 − 𝑥𝑗)2 + 𝑐2, 0 ≤ 𝑗 ≤ 𝑚 − 1, 𝑐 𝜖 ℝ.  

And when the following definitions are met, i.e., 

{

𝜙𝒎(𝑥) = 𝜙0(𝑥) − 2𝑥 + 𝑥𝑚 + 𝑥0,

𝜙−1(𝑥) = 𝜙0(𝑥) + 𝑥0 − 𝑥−1,       

𝜙𝑚+1(𝑥) = 𝜙𝒎(𝑥) + 𝑥𝑚+1 − 𝑥𝑚  ,

    

the MQ quasi-interpolation can be rewritten as 

𝑓∗(𝑥) =
𝑓0 + 𝑓𝑚

2
+

1

2
∑

𝜙𝑗(𝑥) − 𝜙𝑗+1(𝑥)

𝑥𝑗+1 − 𝑥𝑗

(𝑓𝑗+1(𝑥) − 𝑓𝑗(𝑥))
𝑚−1

𝑗=0
.                         (𝟐. 𝟔) 

So, on [x0, xm], we can get 

(𝑓∗(𝑥))′ =
1

2
∑

𝜙𝑗(𝑥)′ − 𝜙𝑗+1(𝑥)′

𝑥𝑗+1 − 𝑥𝑗

(𝑓𝑗+1(𝑥) − 𝑓𝑗(𝑥))
𝑚−1

𝑗=0
,                          (𝟐. 𝟕) 

(𝑓∗(𝑥))′′ =
1

2
∑

𝜙𝑗(𝑥)′′ − 𝜙𝑗+1(𝑥)′′

𝑥𝑗+1 − 𝑥𝑗

(𝑓𝑗+1(𝑥) − 𝑓𝑗(𝑥))
𝑚−1

𝑗=0
.                        (2.8) 

Theorem2.1 [24] As for 𝑓(𝑥) 𝜖 𝐶2 [𝑥0, 𝑥𝑚], when ℎ → 0, there exist constants 𝐾0,  𝐾1, 𝐾2, 𝐾3 independent 

of  ℎ, 𝑐, such that the error of the quasi-interpolation operator satisfies 

‖𝑓′(𝑥) − (𝑓∗(𝑥))′‖∞ ≤ 𝑂(ℎ),                                                     (2.9) 

‖𝑓′′(𝑥) − (𝑓∗(𝑥))′′‖∞ ≤ 𝑂(ℎ
2

3).                                                            (2.10) 

3. MQ quasi-interpolation for solving Black-Scholes equation 

3.1 MQ quasi-interpolation numerical scheme 

In this paper, we use the quasi-interpolation method to solve the Black-Scholes equation. First, we 

spread the space by using the MQ quasi-interpolation to approximate the first and second derivatives of 

stock prices, while in time with step ∆𝑡, we get 

𝑢𝑗
𝑛+1 − 𝑢𝑗

𝑛

Δ𝑡
−

1

2
𝜎2(𝑢𝑥𝑥)𝑗

𝑛 − (𝑟 −
1

2
𝜎2)(𝑢𝑥)𝑗

𝑛 + 𝑟𝑢𝑗
𝑛 = 0,                                          (3.1) 

where 𝑢𝑗
𝑛  is the approximation of 𝑢(𝑥, 𝜏)  at point (𝑥𝑗, 𝜏𝑛)  by quasi-interpolation and (𝑢𝑥)𝑗

𝑛,  (𝑢𝑥𝑥)𝑗
𝑛  is 

defined in (2.7) and (2.8). Here we call it the MQ scheme. 

In order to compare with the finite difference method, we first write the numerical scheme of the finite 

difference method (FDM) [25] 

(𝑢𝐹)𝑗
𝑛+1−(𝑢𝐹)𝑗

𝑛

Δ𝑡
= 

1

2
𝜎2 (𝑢𝐹)𝑗+1

𝑛 −2(𝑢𝐹)𝑗
𝑛+(𝑢𝐹)𝑗−1

𝑛

ℎ2 + (𝑟 −
1

2
𝜎2)

(𝑢𝐹)𝑗+1
𝑛 −(𝑢𝐹)𝑗

𝑛

ℎ
− 𝑟(𝑢𝐹)𝑗

𝑛,      (3.2) 

where (𝑢𝐹)𝑗
𝑛 is the approximation of 𝑢(𝑥, 𝜏) at point (𝑥𝑗, 𝜏𝑛) by the finite difference method. 

3.2 Convergence analysis 

Theorem3.1 The solution of the MQ scheme we proposed converges to the exact solution of the Black-

Scholes equation (2.3), and under the condition of  
Δ𝑡

ℎ
|𝑟 −

𝜎2

2
| < 1, the convergence order is 𝑂(ℎ

2

3 + Δ𝑡). 

Proof:  (3.1) - (3.2) lead to 

𝑢𝑗
𝑛+1 − (𝑢𝐹)𝑗

𝑛+1 = (1 − 𝑟𝛥𝑡)(𝑢𝑗
𝑛 − (𝑢𝐹)𝑗

𝑛) + (𝑟 −
1

2
𝜎2)𝛥𝑡[(𝑢𝑥)𝑗

𝑛 −
(𝑢𝐹)𝑗+1

𝑛 − (𝑢𝐹)𝑗
𝑛

ℎ
] 
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                                                      +  1

2
𝜎2𝛥𝑡[(𝑢𝑥𝑥)𝑗

𝑛 −
(𝑢𝐹)𝑗+1

𝑛 −2(𝑢𝐹)𝑗
𝑛+(𝑢𝐹)𝑗−1

𝑛

ℎ2 ]. 

Introduce some notations 

𝐴 = (𝑢𝑥)𝑗
𝑛 −

(𝑢𝐹)𝑗+1
𝑛 − (𝑢𝐹)𝑗

𝑛

ℎ
, 

𝐵 = (𝑢𝑥𝑥)𝑗
𝑛 −

(𝑢𝐹)𝑗+1
𝑛 − 2(𝑢𝐹)𝑗

𝑛 + (𝑢𝐹)𝑗−1
𝑛

ℎ2
. 

Then, 

           

|𝐴| ≤ |(𝑢𝑥)𝑗
𝑛 − (𝑢𝑥)(𝑥𝑗 , 𝜏𝑛)| +  |(𝑢𝑥)(𝑥𝑗 , 𝜏𝑛) −

(𝑢𝐹)𝑗+1
𝑛 − (𝑢𝐹)𝑗

𝑛

ℎ
| ≤ 𝑂(ℎ) +  𝑂(ℎ) =  𝑂(ℎ).             (3.3) 

Similary, we can get 

∣ 𝐵 ∣ ≤ 𝑂 (ℎ
2
3) + 𝑂(ℎ2) = 𝑂 (ℎ

2
3) ,                                                            (3.4) 

then we can get 

‖𝑅̃𝑗
𝑛+1‖ ≤ ‖(1 + 𝑟𝛥𝑡)𝑅̃𝑗

𝑛‖∞ + 𝛥𝑡𝑂(ℎ
2

3)  ≤ ‖𝑒𝑟𝑛𝛥𝑡(𝑅̃0 + ∑ 𝛥𝑡𝑂(ℎ
2

3))‖∞ ≤
𝑀

𝑛=0
𝑂(ℎ

2

3),                   (3.5) 

where 𝑅̃𝑗
𝑛 = 𝑢𝑗

𝑛 − (𝑢𝐹)𝑗
𝑛 . 

This means that the solution 𝑢𝑗
𝑛 of the MQ scheme we proposed converges to the difference scheme 

solution (𝑢𝐹)𝑗
𝑛. Because the finite difference scheme converges to the exact solution of the equation, and the 

order of convergence 𝑂(Δ𝑡 + ℎ) [25]. Therefore, we can obtain that, under the condition of satisfying the 

stability of the difference scheme, the solution of the MQ scheme converges to the exact solution, and the 

convergence order is  𝑂 (Δ𝑡 + ℎ
2

3).  

4. Numerical experiments 

In order to demonstrate the accuracy of the MQ scheme for option pricing, we take the European put 

option as an example under uniform points and scattered points for comparison . 

TABLE 1 : Parameters of numerical example. 

Name Value 

Asset price value 𝑆𝜖[𝑒−3.5, 𝑒4.5] 

Space-step size ℎ = 8/1280 

Time-step size ∆𝑡 = 5 × 10−4 

Expiration date 𝑇 = 0.5 

Exercise price 𝐾 = 10 

Risk free interest rate 𝑟 = 0.5 

Volatility 𝜎 = 0.2 

Support radius 𝑐 = 0.1ℎ
1
3 

 

Example 4.1  At first, we consider approximating option prices on the uniform grids. The settings of 

relevant parameters are shown in the TABLE 1. In TABLE 2, we give the 𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 and mean square error 

(RMSE), which are defined as 

𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥
0≤𝑗≤𝑀

∣ 𝑢𝑒𝑥𝑎𝑐𝑡(𝑗) − 𝑢𝑎𝑝𝑝𝑒𝑟(𝑗) ∣, 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑(𝑢𝑒𝑥𝑎𝑐𝑡(𝑗) − 𝑢𝑎𝑝𝑝𝑒𝑟(𝑗))2

𝐽

𝐽=0

. 
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The numerical results obtained by the MQ scheme are shown in Fig. 1. Fig. 2 shows the 

approximate errors of option price by the MQ scheme and the finite difference method at 𝜏 = 200Δ𝑡. 

From the TABLE 2 and Figs. 1-2, we can observe that we get accurate results by using the MQ 

scheme. Fig. 2 shows that the solution of the MQ scheme is close to the finite difference numerical 

solution at 𝜏 = 200Δ𝑡, and the effect is slightly better than the finite difference method. 

 

 

 

 

TABLE 2: Comparison between the exact solution and the numerical solution. 

S Exact MQ error 

1 8.7531 8.7530 1.0000e-04 

2 7.7519 7.7518 1.0000e-04 

3 6.7489 6.7488 1.0000e-04 

4 5.7483 5.7481 2.0000e-04 

5 4.7348 4.7375 2.7000e-03 

6 3.7412 3.7410 2.0000e-04 

7 2.7285 2.7286 1.0000e-04 

8 1.7856 1.7863 7.0000e-04 

9 0.9709 0.9713 4.0000e-04 

10 0.4274 0.4275 1.0000e-04 

RMSE  1.6860e-04  

𝐿∞ − 𝑒𝑟𝑟𝑜𝑟  5.3358e-03  

 

 

Fig.1  Comparison between the exact solution and the                     Fig. 2  Errors of the MQ scheme and the FDM 

   numerical solution of the MQ scheme.                                             scheme. 

 

 

 

                           

 

 



Jialing Wang et al.: A Quasi-Radial Basis Function Method for European Option Pricing 

 

 

96 

 
(a) The solution of the MQ scheme.                                                          (b) Exact solution. 

Fig. 3 Comparison between the exact solution and the numerical solution. 

Example 4.2   For scattered datas, we choose 𝑥𝑗 = 𝑗ℎ − 0.3𝑠𝑖𝑛(2𝜋ℎ), ℎ = 𝑚𝑎𝑥 ∣ 𝑥𝑗+1 − 𝑥𝑗 ∣, 𝐽 = 200, 𝑗 =

−
𝐽

2
, … ,

𝐽

2
,  and the shape parameter of quasi-interpolation is 𝑐 = 0.1ℎ

1

3. Fig. 3 shows the numerical and 

exact solution, and Fig. 4 shows the approximate errors of the MQ scheme. 

 

From the Figs. 3-4, we can obtain that the solution of the MQ scheme also has good agreement 

with exact solution and we can get small errors in the option price under scattered points. 

 

 

 

 

 

 

 

Fig. 4  Errors of the MQ scheme under scattered points. 

5. Conclusions 

MQ quasi-interpolation method not only provides understanding of interpolation formula, but also provides the 

derivative of the interpolation formula, which makes it close to the change of the asset price and does not need 

additional interpolation technology. Based on the above, this method is easy to calculate. From the results, we can 

obtain that the MQ scheme proposed here can well simulate the option price whether it is under uniform points or 

scattered points. 
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