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Abstract. This article presents a mathematical model to study the impact of electro kinetic variable 

viscosity on peristaltic transfer of Jeffrey fluid. We have considered the non-Newtonian Jeffrey fluid model 

with the use of linear momentum. Poisson-Boltzmann equations are simplified by using Debye-H𝑢̈ckel 

linearization approximation. The closed form analytical solutions are presented by using long wavelength and 

low Reynolds number assumptions. The expressions for pressure rise and pressure gradient are determined 

by using perturbation method. The influence of various parameters like Jeffrey fluid parameter, Electro-

osmotic parameter, Electroosmotic velocity and Viscosity parameter on the flow characteristics are discussed 

through graphs. It is revealed that with an increase in the Viscosity parameter there is decrease in the 

pumping, free pumping, enhances in the augmented pumping region and the axial pressure gradient decreases 

with increasing Viscosity. 

Keywords: Jeffrey fluid, Electro-osmotic, Electroosmotic velocity and Viscosity parameter 

1. Introduction  

The phenomena of peristaltic are of great importance in many engineering and biological systems. 

Latham [1] has coined the idea of fluid transport by means of peristaltic waves in mechanical and 

physiological studies. Peristaltic flow of non-Newtonian fluids in a tube was first studied by Raju and 

Devanathan [2]. Information on the topic is quite reasonable and researchers mention a few recent 

representative attempts and several useful references in their investigations [3-8].  

Divya et al. [9] described the hemodynamics of variable liquid properties on the MHD peristaltic 

mechanism of Jeffery fluid with heat and mass transfer. Here it is observed that increase in the variable 

viscosity parameter is found to accelerate the fluid flow. Abbasi et al. [10] described the hydro magnetic 

peristaltic transport of copper-water nanofluid with temperature-dependent effective viscosity. Their 

analysis shows that, pressure gradient in the wider part of the channel is found to increase as a function of 

the variable viscosity. Akbar and Nadeem [11] have analyzed the simulation of variable viscosity and 

Jeffrey fluid model for blood flow through a tapered artery with a stenosis. Farooq et al. [12] studied the 

magneto hydrodynamic peristalsis of variable viscosity Jeffrey fluid with heat and mass transfer. It is 

noticed that velocity has small resistance in the case of variable viscosity. Nadeem and Akbar [13] discussed 

the peristaltic flow of a Jeffrey fluid with Variable Viscosity in an asymmetric channel. 

Flow of fluids in channels under the effect of an electrical field is a key area in both medical 

engineering and energy sciences. R. E Abo-Elkhalr et al. [14] studied combine impacts of electro kinetic 

variable viscosity and partial slip on peristaltic MHD flow through a Micro-Channel, observing that they are 

especially used to relieve pain and also to accelerate fracture healing in bones. These remedial procedures 

have also been employed to accelerate the flow of blood. Laxmi et al. [15] studied the peristaltically induced 

Electroosmotic flow of Jeffrey fluid with Zeta potential and Navier- Slip at the wall. Electrokinetic flow of 

peristaltic transport of Jeffrey fluid in a porous channel analyzed by Laxmi et al. [16]. Microchannels are 

used in fluid control. Sharma et al. [17] demonstrated the analysis of double diffusive convection in 

electroosmosis regulated peristaltic transport of nanofluids. Their analysis can be utilized in clinical 

significances like drug delivery systems, cell therapeutics and particles filtrations.   Some researchers 

studied on microchannel [18-20]. 

In this paper the impact of electro kinetic variable viscosity on peristaltic transfer of Jeffrey fluid were 

investigated. Consider the approximation of long wavelength and low Reynolds number, the governing flow 

problem is simplified by using perturbation method. The resulting equations are solved analytically and 
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exact solutions are presented. The impact of all the physical parameters of interest is taken into 

consideration with the help of graphs. 

2. Mathematical model 

Consider an incompressible Jeffrey fluid in a two dimensional micro-channel of width 2𝑎 . The 

sinusoidal wave trains propagate along the channel wall with constant speed c  and propped the fluid along 

the walls. In a regular co-ordinate system (𝑋, 𝑌), the geometry of the wall surface is described by 

𝐻(𝑥, 𝑡) = 𝑎 + 𝑏𝑐𝑜𝑠
2𝜋

𝜆
(𝑋 − 𝑐𝑡).                                                                                                                 (1) 

where 𝑏 is amplitude of the waves and 𝜆 is the wave length, 𝑐 is the velocity of wave propagation and 𝑋 is 

the direction of wave propagation. 

The constitutive equations for Jeffrey fluid are given by 

.                                                                                                                                             (2) 

𝑆 =
𝜇(𝑌)

1+𝜆1
(𝛾
•
+ 𝜆2𝛾

••
).                                                                                                                                    (3) 

where 𝑇 and 𝑆 are the Cauchy stress tensor and extra stress tensor, 𝑃 is the pressure, 𝐼 is the identity tensor, 

𝜇 is the dynamic viscosity, 𝜆1 is the ratio of relaxation to retardation times, 𝜆2  is the retardation time, 𝛾
•
 is 

the shear rate and dots over the quantities denote differentiation. 

Under the assumptions that the channel length is an integral multiple of the wave length 𝜆 and the pressure 

difference across the ends of the channel is a constant, the flow is inherently unsteady in the laboratory 

frame (𝑋̅, 𝑌̅)and become steady in the wave frame(𝑥̅, 𝑦̅) which is moving with velocity 𝑐 along the wave. 

The transformation between these two frames is given by 𝑥 = 𝑋̅ − 𝑐𝑡, 𝑦 = 𝑌̅, 𝑢 = 𝑈̅, 𝑣 = 𝑉̅.         (4)                                                                                    

Where 𝑈  and 𝑉  are velocity components within in the laboratory frame and 𝑢 and𝑣  are the velocity 

components within the wave frame. 

The equations governing the electro osmotic flow are taken as 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0.                                                                                                        (5) 

𝜌 [𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+
𝜕𝜏𝑥𝑥

𝜕𝑥
+
𝜕𝜏𝑥𝑦

𝜕𝑦
−
𝜇

𝑘
(𝑢 + 𝑐) + 𝜌𝑒𝐸𝑥 .                                                                         (6) 

𝜌 [𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑦𝑦

𝜕𝑦
.                                                                                                     (7) 

where 𝐸𝑥 denote electro kinetic body force. The Poisson’s equation is defined as  

𝛥2𝛷 = −
𝜌𝑒

𝜀
.                                                                                                                                                 (8) 

in which 𝑘 is the permeability of the porous medium, 𝜌𝑒 is the density of the total ionic charge and 𝜀 is the 

permittivity. The Boltzmann equation is expressed as  

𝑛+ = 𝑛0𝐸𝑥𝑝 [+
𝑒𝑧𝛷

𝐾𝐵𝑇
].                                                                                                                                   (9) 

Where 𝑛0 represents concentration of ions at the bulk, which is independent of surface electrochemistry, 𝑒 is 

the electronic charge, is the charge balance, 𝐾𝐵 is the Boltzmann constant, and 𝑇 is the average temperature 

of the electrolytic solution.  

Introducing the non-dimensional quantities 

𝑥̄ =
𝑥

𝜆
, 𝑦̄ =

𝑦

𝑎
, 𝑢̄ =

𝑢

𝑐
, 𝑣̄ =

𝑣

𝑐𝛿
, 𝛿 =

𝑎

𝜆
, 𝑝 =

𝑎2𝑝̄

𝜇0𝑐𝜆
, 

𝑡̄ =
𝑐𝑡

𝜆
, 𝜏̄ =

𝑎𝜏

𝜇0𝑐
, 𝜑 =

𝑏

𝑎
,𝛷 =

𝛷

𝑎2
, 

                                               𝑅𝑒 =
𝜌𝑐𝑎

𝜇
𝑎𝑛𝑑𝜇(𝑦) =

𝜇(𝑦)

𝜇0
                                                                            (10) 

The equations governing the flow become 
∂𝑢

∂𝑥
+
∂𝑢

∂𝑦
= 0.                                                                                     (11) 

𝑅𝑒𝛿 [𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝜏𝑥𝑥

𝜕𝑥
+
𝜕𝜏𝑥𝑦

𝜕𝑦
−

1

𝐷𝑎
(𝑢 + 1) + 𝑚2𝑈ℎ𝑠𝛷.                                                         (12) 

𝛿3𝑅𝑒 [𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ 𝛿2

𝜕𝜏𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝜏𝑦𝑦

𝜕𝑦
.                                                                                           (13) 

where   

T PI S= − +

2



Laxmi Devindrappa: Impact of electrokinetic variable viscosity on peristaltic transfer of Jeffrey fluid 

 

JIC email for contribution: editor@jic.org.uk 

128 

𝜏𝑥𝑥 =
2𝛿𝜇(𝑦)

1 + 𝜆1
[1 +

𝛿𝜆2𝑐

𝑎
(𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
)]
𝜕𝑢

𝜕𝑥
, 

𝜏𝑦𝑦 =
2𝛿𝜇(𝑦)

(1 + 𝜆1)
[1 +

𝛿𝜆2𝑐

𝑎
(𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
)]
𝜕𝑢

𝜕𝑦
, 

𝜏𝑥𝑦 =
𝜇(𝑦)

1 + 𝜆1
[1 +

𝛿𝜆2𝑐

𝑎
(𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
)] (

𝜕𝑢

𝜕𝑦
+ 𝛿2

𝜕𝑣

𝜕𝑥
), 

Using long wavelength approximation and dropping terms of order and higher, Eqs. (11) - (13) reduces to 
𝜕

𝜕𝑦
(
𝜇(𝑦)

1+𝜆1

𝜕𝑢

𝜕𝑦
) −𝑀2(𝑢 + 1) + 𝑚2𝛽𝛷 =

𝜕𝑝

𝜕𝑥
.                                                                           (14) 

.                                                                                                                                                      (15) 

Where 𝜇(𝑦) is the viscosity variation on peristaltic flow. For the present analysis, we assume viscosity 

variation in the form [1]: 

𝜇(𝑦) = 𝑒−𝛼𝑦 ≃ 1 − 𝛼𝑦 + 𝛼2𝑦2, 𝑓𝑜𝑟𝛼 ≪ 1. 
The non dimensional boundary conditions are  
𝜕𝑢

𝜕𝑦
= 0𝑎𝑡𝑦 = 0𝑎𝑛𝑑𝑢 = −1𝑎𝑡𝑦 = ℎ. .                                                                                                  (16) 

where𝑀2 =
1

𝐷𝑎
, 𝑚 = 𝑎𝑒𝑧√

2𝑛0

𝜀𝐾𝐵𝑇
 is known as the electroosmotic parameter and 𝛽 = −

𝐸𝑥𝜀𝜁

𝜇0𝑐
 is the maximum 

electroosmotic velocity. Applying Debye-Hückel linearization approximation, Poisson-Boltzmann equation 

reduces to  
𝜕2𝛷

𝜕𝑦2
= 𝑚2𝛷.                                                                                                                                                 (17) 

The boundary conditions for electrical potential are 
𝜕𝛷

𝜕𝑦
= 0𝑎𝑡𝑦 = 0,𝛷 = 1𝑎𝑡𝑦 = ℎ.                                                                                                                  (18) 

The solution of the Possion-Boltzmann equation (17) subjected to boundary conditions (18) give rise to 

𝛷 =
𝐶𝑜𝑠ℎ[𝑚𝑦]

𝐶𝑜𝑠ℎ[𝑚ℎ]
.                                                                                                                                               (19) 

The instantaneous volume flow rate 𝑄(𝑥, 𝑡) in the laboratory frame between the central line and the wall is 

𝑄(𝑥, 𝑡) = ∫ (𝑢 + 1)𝑑𝑦
ℎ

0
= 𝑞 + ℎ.                                                                                                                (20) 

𝑄 =
1

𝑇
∫ 𝑄𝑑𝑡
𝑇

0
= 𝑞 + 1.                                                                                                                               (21) 

3. Perturbation solution 

Eq. (14) is a nonlinear differential equation so that it is not possible to obtain a closed form solution, we 

consider the perturbation expansion by writing  

𝑓 = 𝑓0 + 𝛼𝑓1 + 𝛼
2𝑓2+. ..                                                                                                                            (22) 

In which f can be replaced by 𝑢𝑎𝑛𝑑
𝜕𝑝

𝜕𝑥
. And collecting the coefficients of equal power of  𝛼. 

First we get the zeroth order equation as 
1

1+𝜆1

𝜕2𝑢0

𝜕𝑦2
−𝑀2(𝑢0 + 1) +𝑚

2𝛽
𝐶𝑜𝑠ℎ(𝑚𝑦)

𝐶𝑜𝑠ℎ(𝑚ℎ)
=
𝜕𝑝0

𝜕𝑥
                                                                                         (23) 

The corresponding boundary conditions 
𝜕𝑢0
𝜕𝑦

= 0, 𝑎𝑡𝑦 = 0 

                                                                      𝑢0 = −1𝑎𝑡𝑦 = ℎ                                                             (24) 

Second, the first order perturbation equation can be written as 
𝜕2𝑢1

𝜕𝑦2
−𝑁2𝑢1 = (1 + 𝜆1)

𝜕𝑝1

𝜕𝑥
+
𝜕𝑢0

𝜕𝑦
+ 𝑦

𝜕2𝑢0

𝜕𝑦2
                                                                                               (25) 

𝜕𝑢1
𝜕𝑦

= 0, 𝑎𝑡𝑦 = 0 

                                                                        𝑢1 = 0𝑎𝑡𝑦 = ℎ                                                                (26) 

The second order perturbation equation can be written as 
𝜕2𝑢2

𝜕𝑦2
−𝑁2𝑢2 = (1 + 𝜆1)

𝜕𝑝2

𝜕𝑥
+
𝜕𝑢1

𝜕𝑦
+ 𝑦

𝜕2𝑢1

𝜕𝑦2
− 2𝑦

𝜕𝑢0

𝜕𝑦
− 𝑦2

𝜕2𝑢0

𝜕𝑦2
                                                               (27) 



0
p

y


=


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𝜕𝑢2
𝜕𝑦

= 0, 𝑎𝑡𝑦 = 0 

                                                                      𝑢2 = 0𝑎𝑡𝑦 = ℎ                                                                (28) 

From Eqs. (23) and (24) we have  

𝑢0 = 𝐶2𝐶𝑜𝑠ℎ[𝑚𝑦] + 𝐶1𝐶𝑜𝑠ℎ[𝑁𝑦] − 1 −
𝑑𝑝0

𝑑𝑥

(1+𝜆1)

𝑁2
.                                                                                  (29) 

Where   

𝐶1 =
𝑑𝑝0
𝑑𝑥

(1 + 𝜆1)

𝑁2𝐶𝑜𝑠ℎ(𝑁ℎ)
−
𝐶2𝐶𝑜𝑠ℎ(𝑚ℎ)

𝐶𝑜𝑠ℎ(𝑁ℎ)
. 

𝐶2 =
(1 + 𝜆1)𝑚

2𝛽𝑆𝑒𝑐ℎ(𝑚ℎ)

(𝑚2 − 𝑁2)
. 

Axial pressure gradient takes the form  
𝑑𝑝0

𝑑𝑥
= (𝑞 +

ℎ𝑚𝑁−𝐶2𝑁𝑆𝑖𝑛ℎ(ℎ𝑚)+𝐶2𝑚𝐶𝑜𝑠ℎ(ℎ𝑚)𝑇𝑎𝑛ℎ(ℎ𝑁)

𝑚𝑁
)

𝑁3

(1+𝜆1)(−ℎ𝑁+𝑇𝑎𝑛ℎ(ℎ𝑁))
.                                                 (30) 

Similarly we get the first and second order solutions as fallows  

𝑢1 = −
1

4(𝑚−𝑁)2𝑁2(𝑚+𝑁)2
𝑒ℎ𝑁(𝐶3 + 𝐶4 + 𝐶5𝐶1)(1 − 𝑇𝑎𝑛(ℎ𝑁)).                                                               (31) 

𝐶3 = −4𝐶𝑜𝑠ℎ(𝑁𝑦)((𝑚
2 −𝑁2)2

𝑑𝑝1

𝑑𝑥
(1 + 𝜆1) + 𝐶2𝑚𝑁

2 (
ℎ𝑚(−𝑚2 +𝑁2)𝐶𝑜𝑠ℎ(ℎ𝑚) +

(𝑚2 +𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑚) − 2𝑚𝑁𝑆𝑖𝑛ℎ(ℎ𝑁)
)).  

𝐶4 = 4𝐶𝑜𝑠ℎ(𝑁ℎ) ((𝑚
2 −𝑁2)2

𝑑𝑝1

𝑑𝑥
(1 + 𝜆1) + 𝐶2𝑚𝑁

2 (
𝑚(−𝑚2 +𝑁2)𝑦𝐶𝑜𝑠ℎ(ℎ𝑦) +

(𝑚2 +𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑦) − 2𝑚𝑁𝑆𝑖𝑛ℎ(ℎ𝑦)
)). 

𝐶5 = 𝑁(𝑚
2 −𝑁2)2 (

(−1 + ℎ
2𝑁2)𝐶𝑜𝑠ℎ(𝑁𝑦)𝑆𝑖𝑛ℎ(ℎ𝑁) +

𝐶𝑜𝑠ℎ(ℎ𝑁)(𝑁(ℎ− 𝑦)𝐶𝑜𝑠ℎ(𝑁𝑦) + (1 − 𝑁2𝑦2)𝑆𝑖𝑛ℎ(𝑁𝑦))
).                        

𝑑𝑝1

𝑑𝑥
= −

(4(𝑚−𝑁)2𝑁2(𝑚+𝑁)2)

𝐶6
(𝑞 +

1

4(𝑚−𝑁)2𝑁2(𝑚+𝑁)2
𝑒ℎ𝑁(𝐶7 − 𝐶8 − 𝐶9𝐶1)(1 − 𝑇𝑎𝑛ℎ(ℎ𝑁)))                   (32) 

𝐶6 = (𝑒
ℎ𝑁 (4ℎ(𝑚2 −𝑁2)2(1 + 𝜆1)𝐶𝑜𝑠ℎ(ℎ𝑁) −

4ℎ(𝑚2 − 𝑁2)2(1 + 𝜆1)𝐶𝑜𝑠ℎ(ℎ𝑁)

𝑁
) (1 − 𝑇𝑎𝑛ℎ(ℎ𝑁))) 

𝐶7 = −4𝐶2𝑚𝑁
2𝐶𝑜𝑠ℎ(ℎ𝑁)(−2𝑚𝐶𝑜𝑠ℎ(ℎ𝑚) + 2𝑚𝐶𝑜𝑠ℎ(ℎ𝑁) + ℎ(𝑚2 −𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑚)) 

𝐶8 = 4𝐶2𝑚𝑁𝑆𝑖𝑛ℎ(ℎ𝑁)(ℎ𝑚(−𝑚
2 +𝑁2)𝐶𝑜𝑠ℎ(ℎ𝑚) + (𝑚2 +𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑚) − 2𝑚𝑁𝑆𝑖𝑛ℎ(ℎ𝑁)) 

𝐶9 =
1

2
(𝑚2 −𝑁2)2(−1 + 2ℎ2𝑁2 + 𝐶𝑜𝑠ℎ(2ℎ𝑁) − 2ℎ𝑁𝑆𝑖𝑛ℎ(2ℎ𝑁)) 

𝑢2 = −
1

96(𝑚−𝑁)4𝑁3(𝑚+𝑁)4
𝑒ℎ𝑁 (

24(
2𝐶2𝑚𝑁

4𝐶𝑜𝑠ℎ(ℎ𝑁)𝐶10 + (𝑚 − 𝑁)
2

(𝑚 +𝑁)2𝐶11𝐶12(1 − 𝑇𝑎𝑛ℎ(ℎ𝑁))
)

+(𝑚 − 𝑁)4𝑁(𝑚 +𝑁)4𝐶13

)(1 − 𝑇𝑎𝑛ℎ(ℎ𝑁)).             (33)                                                                                                                 

𝐶10 =

(
−2𝑚𝑁(4𝑚2 + 8𝑁2 + (𝑚2 −𝑁2)2𝑦2)𝐶𝑜𝑠ℎ(𝑚𝑦) + 𝑚𝑁(8𝑚2 + 16𝑁2 − (𝑚2 −𝑁2)2𝑦2)𝐶𝑜𝑠ℎ(𝑁𝑦)

−4𝑁(−2𝑚4 +𝑚2𝑁2 +𝑁4)𝑦𝑆𝑖𝑛ℎ(𝑚𝑦) − 𝑚(𝑚2 −𝑁2)2𝑦𝑆𝑖𝑛ℎ(𝑁𝑦)
).  

𝐶11 = (
−(𝑚2 −𝑁2)2

𝑑𝑝1

𝑑𝑥
(1 + 𝜆1) + 𝐶2𝑚𝑁

2

(ℎ𝑚(𝑚 −𝑁)(𝑚 + 𝑁)𝐶𝑜𝑠ℎ(ℎ𝑚) − (𝑚2 +𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑚) + 2𝑚𝑁𝑆𝑖𝑛ℎ(ℎ𝑁))
).  

𝐶12 = (𝑁𝑦𝐶𝑜𝑠ℎ(𝑁𝑦) + (−1 + 𝑦
2𝑁2)𝑆𝑖𝑛ℎ(𝑁𝑦)).  

𝐶13 =

(

  
 (

6(−1 + ℎ
2𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑁)(𝑁𝑦𝐶𝑜𝑠ℎ(𝑁𝑦) + (−1 + ℎ

2𝑁2)𝑆𝑖𝑛ℎ(𝑦𝑁)) +

𝑁𝐶𝑜𝑠ℎ(ℎ𝑁)(
3𝑁𝑦(2ℎ+ 5𝑦 − 𝑁2𝑦3)𝐶𝑜𝑠ℎ(𝑁𝑦) +

(−6ℎ− 15𝑦 + 6ℎ𝑁2𝑦2 − 2𝑁2𝑦3)𝑆𝑖𝑛ℎ(𝑁𝑦)
)

)

𝐶1 − 96(1 + 𝜆1)𝐶𝑜𝑠ℎ(ℎ𝑁)(−1 + 𝐶𝑜𝑠ℎ(𝑁𝑦))
𝑑𝑝2
𝑑𝑥 )

  
 
. 

𝑑𝑝2

𝑑𝑥
=

𝑁3

𝐶17
(𝑞 +

1

96(𝑚−𝑁)4𝑁3(𝑚+𝑁)4
𝑒ℎ𝑁(24(𝐶14 + 𝐶15) + 𝐶16𝐶1)(1 − 𝑇𝑎𝑛ℎ(ℎ𝑁)).                                   (34) 
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𝐶14 = −2𝐶2𝑚𝑁
2𝐶𝑜𝑠ℎ(ℎ𝑁)

(

 
 
 

−12ℎ𝑚𝑁3(𝑚2 −𝑁2)𝐶𝑜𝑠ℎ(ℎ𝑚) − ℎ𝑚𝑁(𝑚2 −𝑁2)2𝐶𝑜𝑠ℎ(ℎ𝑁)

+20𝑚2𝑁3𝑆𝑖𝑛ℎ(ℎ𝑚) + 2ℎ2𝑚4𝑁3𝑆𝑖𝑛ℎ(ℎ𝑚) + 4𝑁5𝑆𝑖𝑛ℎ(ℎ𝑚) −

4ℎ2𝑚2𝑁5𝑆𝑖𝑛ℎ(ℎ𝑚) + 2ℎ2𝑁7𝑆𝑖𝑛ℎ(ℎ𝑚) +𝑚5𝑆𝑖𝑛ℎ(ℎ𝑁)

−10𝑚3𝑁2𝑆𝑖𝑛ℎ(ℎ𝑁) + ℎ
2𝑚5𝑁2𝑆𝑖𝑛ℎ(ℎ𝑁) − 15𝑚𝑁4𝑆𝑖𝑛ℎ(ℎ𝑁)

−2ℎ2𝑚3𝑁4𝑆𝑖𝑛ℎ(ℎ𝑁) + ℎ
2𝑚𝑁6𝑆𝑖𝑛ℎ(ℎ𝑁) )

 
 
 
. 

𝐶15 = ℎ(𝑚 − 𝑁)2(𝑚 + 𝑁)2(ℎ𝑁𝐶𝑜𝑠ℎ(ℎ𝑁) − 𝑆𝑖𝑛ℎ(ℎ𝑁))(
−(𝑚2 −𝑁2)2

𝑑𝑝1
𝑑𝑥

(1 + 𝜆1) + 𝐶2𝑚𝑁
2

(
ℎ𝑚(𝑚 −𝑁)(𝑚 + 𝑁)𝐶𝑜𝑠ℎ(ℎ𝑚) −

(𝑚2 +𝑁2)𝑆𝑖𝑛ℎ(ℎ𝑚) + 2𝑚𝑁𝑆𝑖𝑛ℎ(ℎ𝑁)
)
). 

𝐶16 =
1

2
(𝑚 − 𝑁)4(𝑚 + 𝑁)4 (

ℎ𝑁(9 + 22ℎ2𝑁2) + ℎ𝑁(21 + 10ℎ2𝑁2)𝐶𝑜𝑠ℎ(2ℎ𝑁)

+3(−5 − 9ℎ2𝑁2 + ℎ
4𝑁4)𝑆𝑖𝑛ℎ(2ℎ𝑁)

). 

𝐶17 = 𝑒
ℎ𝑁(1 + 𝜆1)𝐶𝑜𝑠ℎ(ℎ𝑁)(−ℎ𝑁 + 𝑆𝑖𝑛ℎ(ℎ𝑁))(1 − 𝑇𝑎𝑛ℎ(ℎ𝑁)). 

Thus, we can get 

𝑢 = 𝑢0 + 𝛼𝑢1 + 𝛼
2𝑢2. 

𝑑𝑝

𝑑𝑥
=
𝑑𝑝0
𝑑𝑥

+ 𝛼
𝑑𝑝1
𝑑𝑥

+ 𝛼2
𝑑𝑝2
𝑑𝑥
. 

The pressure rise per wave length is given by 

𝛥𝑝 = ∫ (
𝑑𝑝

𝑑𝑥
)𝑑𝑥

1

0

. 

The volume flux q through each cross section of the channel in the wave frame is given by 

𝑞 = ∫ 𝑢𝑑𝑦
ℎ

0

 

4. Results and discussion 

 In order to estimate the present analysis, equations are solved by perturbation method. To study the 

effects of Jeffrey fluid parameter𝜆1, Electro-osmotic parameter 𝑚, Electroosmotic velocity and Viscosity 

parameter 𝛼  on pressure rise and friction force per wave length are solved numerically, Numerical 

simulation are performed by using MATHEMATICA software.  We have presented a set of Figures, which 

describe the effects of various parameters of interest on flow quantities such as pressure gradient and 

pressure rise per wavelength. 

 Figures 1(a)-(d)show the variations of the axial pressure gradient 
𝑑𝑝

𝑑𝑥
 along the length of the channel, 

which has oscillatory behavior in the whole range of the 𝑥 -axis for all other parameters. From Figure 1(a) it 

is seen that for fixed values of all other parameters, the axial pressure gradient decreases with increase in 

Jeffrey fluid parameter. The effect of electro-osmotic parameter is depicted in Figure 1 (b). It is noted that 

axial pressure gradient enhances with increasing Electro-osmotic parameter. From Figure 1(c) it is observed 

that, with an increase in the Electroosmotic velocity the axial pressure gradient increases. The effect of 

Viscosity parameter is depicted in Figure 1 (d). It is noted that axial pressure gradient decreases with 

increasing Viscosity. 
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(a)                                                                                (b)    

 

(c)                                                                    (d) 

Fig. 1. Axial pressure gradient for (a) 𝜑 = 0.2,𝑚 = 2, 𝛼 = 0.1𝑎𝑛𝑑𝛽 = 1. (b) 𝜑 = 0.6, 𝜆 = 0.1, 𝛼 = 0.1𝑎𝑛𝑑𝛽 = 1. 
(c)𝜑 = 0.2, 𝜆 = 1, 𝛼 = 0.2𝑎𝑛𝑑𝑚 = 2. (d)𝜑 = 0.2, 𝜆 = 0.3, 𝛽 = 1𝑎𝑛𝑑𝑚 = 2. 

 

Figures 2(a)-(d) give the variations pressure rise with time-averaged flux. It can be noticed from Figure 2(a) 

that for an increase in Jeffrey fluid parameter causes the diminish in pressure rise. The effect of electro-

osmotic parameter on pumping characteristics is depicted in Figure 2 (b). It is noted that Electro-osmotic 

parameter significantly enhance pressure differences with increasing averaged volumetric flow rate in the 

pumping region 𝛥𝑝 > 0, the free pumping region 𝛥𝑝 = 0 and the augmented pumping region 𝛥𝑝 < 0.The 

effect of Electro-osmotic velocity is depicted in Figure 2 (c). It is noted that pressure rise elevates with 

increasing Electro-osmotic velocity in the pumping region, the free pumping region and the augmented 

pumping region. From Figure 2(d) it is revealed that with an increase in the Viscosity there is decrease in 

the pumping region, the free pumping region and enhances in the augmented pumping region. 

Conclusion 

We have investigated the impact of electro kinetic variable viscosity on peristaltic transfer of Jeffrey 

fluid. Closed form solutions are derived for the pressure gradient and pressure rise. The main observations 

of the present work are as follows. 

It is observed that pressure gradient decreases with the increase of Jeffrey fluid parameter 𝜆1and 

viscosity parameter 𝛼. while it increases by increasing 𝑚 and 𝛽 . 

It is observed that pressure rise decreases with the increase in Jeffrey fluid parameter 𝜆1 and viscosity 

parameter. However it increases with an increase in electro-osmotic parameter 𝑚 and electro-osmotic 

velocity 𝛽.  

 

(a)                                                                                (b)    
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(c)                                                 (d) 

Fig. 2. Pressure rise with time-averaged flux for (a)  𝜑 = 0.6,𝑚 = 2.5, 𝛼 = 0.1𝑎𝑛𝑑𝛽 = 1. (b) 𝜑 = 0.2, 𝜆 = 0.1, 𝛼 =
0.1𝑎𝑛𝑑𝛽 = 1. (c)𝜑 = 0.2, 𝜆 = 0.1, 𝛼 = 0.2𝑎𝑛𝑑𝑚 = 2. (d)𝜑 = 0.1, 𝜆 = 0.1, 𝛽 = 1𝑎𝑛𝑑𝑚 = 2. 
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