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Abstract:We propose a new Kantorovich theorem for Newton's method on Lie groups for mappings and matrix 

low-rank optimization problems, which arises from many applications. Under the classical hypothesis of f, we 

establish the convergence criteria of Newton's method from Lie group to its Lie algebra with weakened conditions, 

which improves the corresponding results in [20]. 
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1. Introduction 

In recent years, more and more attentions have been focused on studying numerical algorithms on manifolds. 

Classical optimization problems on manifolds are given by symmetric eigenvalue problems, low-rank nearest 

correlation matrix estimation, invariant subspace computations, optimization problems with equality constraints 

(see [7][9][21]). In this paper we focus on optimization problems on Lie groups. Consider the following problem:  

min
𝑥∈𝑀

𝜙(𝑥),                                      (1.1) 

where 𝑀  is a Riemannian manifold and 𝜙  is a real-valued function on 𝑀 . ee will explore the optimization 

problem when 𝜙 is matrix trace function. It is essentially a kind of constrained matrix optimization problem. Many 

scholars have studied the problem. In [20], 𝜙: 𝐺 → ℝ in (1.1) be given by 

𝜙(𝑥) = −tr(𝑥T𝐶𝑥𝑄) for each 𝑥 ∈  𝐺,                     (1.2) 

where 𝐺 = SO(𝑛, ℝ): = {𝑥 ∈ ℝ𝑛×𝑛|𝑥T𝑥 = I𝑛, det 𝑥 = 1},  C is a fixed symmetric matrix and 𝑄 =

diag(O𝑛−𝜍,𝑛−𝜍 , 𝑄𝜍)  with 𝑄𝜍 = diag(𝑞1, ⋯ , 𝑞𝜍), 0 < 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝜍 , solved a kind of matrix trace function 

optimization problem with orthogonal constraints. Xu solved a generalized singular value of a Grassmann matrix 

pair or a real matrix pair. If 𝑄𝜍 = diag(I𝜍 , O𝑛−𝜍,𝑛−𝜍) for 1 ≤ 𝜍 ≤ 𝑛, Xu solved this case by Riemannian inexact 

Newton-CG method [21]. Different from method in [21], ee consider Newton’s method on Lie group to solve this 

problem. 

Brockett studied the optimization problem when 

𝜙(𝑥) = −tr(𝑥T𝑄𝑥𝐷) for each 𝑥 ∈  𝐺                      (1.3) 

in (1.1), where 𝑄 is a fixed symmetric matrix and 𝐷 with the following structure 

𝐷 = diag(1,2, … , 𝑛), 

showed that the minimum 𝑥∗ ∈ 𝐺 occurs when 𝑥∗T𝑄𝑥∗ is a diagonal matrix with diagonal entries (eigenvalues 
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of 𝑄) in ascending order [3][4]. Sato & Iwai studied the maximum value of the following functions on Riemannian 

manifolds: 

tr(𝑈T𝐴𝑉𝑁), 

where 𝑈 ∈ ℝ𝑚×𝑝, 𝑉 ∈ ℝ𝑛×𝑝  and 𝑈T𝑈 + 𝑉T𝑉 = I𝑝, 𝑁 ∈ ℝ𝑝×𝑝  is a diagonal matrix, 𝐴 ∈ ℝ𝑚×𝑛 . The global 

optimal solution of this problem provides a set of left and right singular vectors, and transforms the problem of 

matrix trace function into finding singular values and singular vectors of 𝐴 [16]. Mahony developed the Newton 

method with a single-parameter subgroup on the Lie group, and proved the local convergence [12]; Xu designed 

the Newton-CG method for the Grassmannian manifold problem to solve the singular value of the matrix pair [21]. 

Lie groups were originally used to solve differential equations. For solving ordinary differential 

equations on Lie groups, Owren and eelfert used the implicit Euler method for Lie groups [14]. Newton method is 

an effective method for solving approximate solutions of equations, and is widely used in large-scale optimal control 

problems, constrained smooth and non-smooth problems (see [13][15]). In Banach space, Kantorovich’s theorem 

(see [10]) is an important result on Newton’s method. It ensures the quadratic convergence of Newton’s method, the 

existence and local uniqueness of the solution under very mild assumptions that the second Fréchet derivative of 𝑓 

is bounded on a proper open metric ball of the initial point 𝑥0. Smith studied Newton’s method in Riemannian 

manifolds [17][18], Ferreira and Svaiter generalized Kantorovich’s theorem of Newton’s method in Riemannian 

manifolds [5]. Li introduced the concept of the 𝛾 condition of the map 𝑓 and established the 𝛾 condition of the 

Newton’s method of the map 𝑓, extending and developing Smale’s 𝛼-theory and 𝛾-theory [11]. eang established 

Kantorovich’s theorem for Newton’s method on Lie groups, under the classical assumption of the map 𝑓, they 

proved the convergence criterion of Newton’s method to the zeros of the map 𝑓, and obtained the estimation of the 

convergence domains [20]. He established the unique ball of a zero of a map on Lie group and an estimation of the 

radius of convergence ball by Newton’s method on a Lie group [6]. Argyros presented the local convergence analysis 

of Newton’s method, obtained a larger convergence ball and a more precise distance error bound [1]. Argyros 

demonstrated semi-local convergence of Newton’s method with sufficiently weak convergence criteria and tighter 

distance error bounds [2]. 

In this paper, we propose New Kantorovich’s theorems for Newton method on Lie groups for mappings and 

matrix low-rank optimization problems. Under the classical assumption of 𝑓, we establish the convergence criterion 

of Newton’s method from Lie group to its Lie algebra with weakened conditions. The rest of this paper is organized 

as follows. In Section 2 some useful notations, and lemma are given. In Section 3 we will give some theorems and 

an algorithm. Finally, in Section 4 concluding remarks are drawn. 

1. Notions and preliminaries 

Most of the notions and notation that are used in the present paper are standard. ℝ and ℝ𝑛×𝑛 denote the sets 

of real numbers and 𝑛 × 𝑛 matrices with entries in ℝ. The symbols I𝑛 and O𝑚×𝑛 represent the n-order identity 

matrix and the 𝑚 × 𝑛 zeros matrix, tr(·) denote the trace function. A Lie group (𝐺,·) is both a manifold and a 

topological group, and its group multiplication map and inverse map are both 𝐶∞. ee assume that the Lie group 

𝐺 is 𝑛-dimensional. The symbol 𝑒 denotes the identity element of 𝐺. The tangent space 𝑇𝑒𝐺 of 𝐺 at 𝑒 is the 

Lie algebra of the Lie group 𝐺, and is also the set of all left-invariant vector fields of 𝐺 , denoted as 𝒢, equipped 

with the Lie bracket [·,·]: 𝒢 × 𝒢 ⟶ 𝒢. For any element 𝑥 in the Lie group 𝐺, 𝑇𝑥𝐺 represents the tangent space 

of 𝑥. 

Next, we will introduce some definitions that will be used. ee define for each 𝑦 ∈ 𝐺  the left translation 

𝐿𝑦: 𝐺 →  𝐺 by 

                         𝐿𝑦(𝑧) =  𝑦 · 𝑧   for each   𝑧 ∈ 𝐺.                          (2.1) 

The differential of 𝐿𝑦 at 𝑧 is denoted by (𝐿𝑦′)𝑧, which determines a linear isomorphism from the tangent space 

𝑇𝑧𝐺 to 𝑇(𝑦·𝑧)𝐺. The exponential map exp 

exp:     𝒢 → 𝐺
    𝑢 ↦ exp (𝑢)

 


