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Abstract. In this paper, we study the combination of compression and Bayesian elastic net. By including a 
compression operation into the ℓ1 and ℓ2 regularization, the assumption on model sparsity is relaxed to 
compressibility: model coefficients are compressed before being penalized, and sparsity is achieved in a 
compressed domain rather than the original space. We focus on the design of compression operations, by 
which we can encode various compressibility assumptions and inductive biases. We show that use of a 
compression operation provides an opportunity to leverage auxiliary information from various sources. The 
compressible Bayesian elastic net has another two major advantages. Firstly, as a Bayesian method, the 
distributional results on the estimates are straightforward, making the statistical inference easier. Secondly, it 
chooses the two penalty parameters simultaneously, avoiding the “double shrinkage problem” in the elastic 
net method. We conduct extensive experiments on braincomputer interfacing, handwritten character 
recognition and text classification. Empirical results show clear improvements in prediction performance by 
including compression in Bayesian elastic net. We also analyze the learned model coefficients under 
appropriate compressibility assumptions, which further demonstrate the advantages of learning compressible 
models instead of sparse models. 
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1. Introduction 
Regularization was initially proposed to solve ill-posed problems (Tikhonov & Arsenin, 1977)[1]. In 

statistical learning, regularization is widely used to control model complexity and prevent overfitting (Hastie 
et al., 2001)[2]. Regularization seeks a trade-off between fitting the observations and reducing the model 
complexity, which is justified by the minimum description length (MDL) principle in information theory 
(Rissanen, 1978)[3] and the bias-variance dilemma in statistics (Sullivan, 1986)[4]. Since the introduction of 
lasso (Tibshirani, 1996)[5], ℓ1-regularization has become very popular for learning in high-dimensional 
spaces. A fundamental assumption of ℓ1-regularization is the sparsity of model parameters, i.e., a large 
fraction of coefficients are zeros. While demonstrating promising performance for many problems, the lasso 
estimator does have some shortcomings.  

Zou and Hastie (2005) [6] emphasized three inherent drawbacks of the lasso estimator. Firstly, due to the 
nature of the convex optimization problem, the lasso method cannot select more predictors than the sample 
size. But in practice there are often studies that involve much more predictors than the sample size, e.g. 
microarray data analysis (Guyon et al. 2002)[7]. Secondly, when there is some group structure among the 
predictors, the lasso estimator usually selects only one predictor from a group while ignoring others. Thirdly, 
when the predictors are highly correlated, the lasso estimator performs unsatisfactorily. Zou and Hastie 
(2005) proposed the elastic net (en) estimator to achieve improved performance in these cases. The en 
estimator can also be viewed as a penalized least squares method where the penalty term is a convex 
combination of the lasso penalty and the ridge penalty.  

Another shortcoming of Lasso is that the sparsity assumption on model coefficients might be too 
restrictive and not necessarily appropriate in many application domains. Indeed, many signals in the real 
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world (e.g., images, audio, videos, time series) are found to be compressible (i.e., sparse in certain 
compressed domain) but not directly sparse in the observed space. Naturally, the assumption of sparsity can 
be relaxed to compressibility. Inspired by the recent development of compressive sampling (or compressed 
sensing) (Candes, 2006[8]; Donoho, 2006[9]), we study learning compressible models: a compression on 
model coefficients can be included in the ℓ1 and ℓ2 penalty, and model is assumed to be sparse after 
compression. 

The rest of this paper is organized as follows. In section 2 we will briefly introduce naïve elastic net. In 
Section 3 we discuss the definition, computation issues and potential benefits of learning compressible 
Bayesian elastic net model. In this Section, we propose some classes of model compressibility assumptions 
and model hierarchy distributions. In Sections 4, we empirically study some real-world problems using 
compressibility as a more appropriate inductive bias than sparsity. Experimental results also demonstrate the 
advantages of compressible Bayesian elastic net (cben) than compressible Bayesian lasso (cbl), elastic net 
(en) and lasso. Section 5 concludes and mentions some discussions. 

2. Naive elastic net 
Suppose that the data set has n observations with p predictors. Let T

nyyy ),...,( 1=  be the response and 

),...,( 1 pxxX =  be the model matrix, where pjxxx T
njjj ,...,1,),...,( 1 == , are the predictors. After a 

location and scale transformation, we can assume that the response is centred and the predictors are 
standardized. 
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For any fixed non-negative λ1 and λ2, we define the naive elastic net criterion 
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The naive elastic net estimator β̂  is the minimizer of equation (1): 
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This procedure can be viewed as a penalized least squares method. Let α=λ1+λ2; then solving β̂  in 
equation (1) is equivalent to the optimization problem 
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We call the function 2
21 ||||)1( βαβα +−  the elastic net penalty, which is a convex combination of the 

lasso and ridge penalty. When α=1, the naive elastic net becomes simple ridge regression. In this paper, we 
consider only α<1. For all α∈[0, 1), the elastic net penalty function is singular (without first derivative) at 0 
and it is strictly convex for all α>0, thus having the characteristics of both the lasso and ridge regression. 
Note that the lasso penalty (α=0) is convex but not strictly convex. These arguments can be seen clearly from 
Fig. 1. 


