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Abstract. The paper contains approximation guarantees for neural networks that are trained with gradient
flow, with error measured in the continuous L, (8%~ !)-norm on the d-dimensional unit sphere and targets that
are Sobolev smooth. The networks are fully connected of constant depth and increasing width. We show
gradient flow convergence based on a neural tangent kernel (NTK) argument for the non-convex optimization
of the second but last layer. Unlike standard NTK analysis, the continuous error norm implies an under-
parametrized regime, possible by the natural smoothness assumption required for approximation. The typ-
ical over-parametrization re-enters the results in form of a loss in approximation rate relative to established
approximation methods for Sobolev smooth functions.
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1 Introduction

Direct approximation results for a large variety of methods, including neural networks,
are typically of the form

inf|fo — fl < n(6)", feK. (1.1)

Le. a target function f is approximated by an approximation method fy, parametrized by
some degrees of freedom or weights 6 up to a rate n(6) " for some n(6) that measures the
richness of the approximation method as width, depth or number of weights for neural
networks. Generally, the approximation rate can be arbitrarily slow unless the target f is
contained in some compact set K, which depends on the approximation method and ap-
plication and is typically a unit ball in a Sobolev, Besov, Barron or other normed smooth-
ness space. Such results are well established for a variety of neural network architectures
and compact sets K, however, these results rarely address how to practically compute the
infimum in the formula above and instead use hand-picked weights.

On the other hand, the neural network optimization literature, typically considers dis-
crete error norms (or losses)

Ifo— fll. = (3 Lo 1fo(x0) - f(xi)|2>

together with neural networks that are over-parametrized, i.e. for which the number of
weights is larger than the number of samples # so that they can achieve zero training error
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