
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Approximation Results for Gradient Flow Trained

Neural Networks

Gerrit Welper * 1

1Department of Mathematics, University of Central Florida, Orlando FL, USA.

Abstract. The paper contains approximation guarantees for neural networks that are trained with gradient
flow, with error measured in the continuous L2(S

d−1)-norm on the d-dimensional unit sphere and targets that
are Sobolev smooth. The networks are fully connected of constant depth and increasing width. We show
gradient flow convergence based on a neural tangent kernel (NTK) argument for the non-convex optimization
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1 Introduction

Direct approximation results for a large variety of methods, including neural networks,
are typically of the form

inf
θ
‖ fθ − f‖ ≤ n(θ)−r, f ∈ K. (1.1)

I.e. a target function f is approximated by an approximation method fθ , parametrized by
some degrees of freedom or weights θ up to a rate n(θ)−r for some n(θ) that measures the
richness of the approximation method as width, depth or number of weights for neural
networks. Generally, the approximation rate can be arbitrarily slow unless the target f is
contained in some compact set K, which depends on the approximation method and ap-
plication and is typically a unit ball in a Sobolev, Besov, Barron or other normed smooth-
ness space. Such results are well established for a variety of neural network architectures
and compact sets K, however, these results rarely address how to practically compute the
infimum in the formula above and instead use hand-picked weights.

On the other hand, the neural network optimization literature, typically considers dis-
crete error norms (or losses)

‖ fθ − f‖∗ :=

(
1

n

n

∑
i=1

| fθ(xi)− f (xi)|2
) 1

2

together with neural networks that are over-parametrized, i.e. for which the number of
weights is larger than the number of samples n so that they can achieve zero training error
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inf
θ
‖ fθ − f‖∗ = 0,

rendering the approximation question obsolete. In contrast, approximation theory mea-
sures the error in continuous norms that emerge in the sample n → ∞ limit, where the
problem is necessarily under-parametrized.

This paper contains approximation results of type (1.1) for fully connected networks
that are trained with gradient flow and therefore avoids the question how to compute the
infimum in (1.1). The outline of the proof follows the typical neural tangent kernel (NTK)
argument: We show that the empirical NTK is close to the infinite width NTK and that
the NTK does not change too much during training. The main differences to the standard
analysis are:

1. Due to the under-parametrization, the eigenvalues of the NTK are not lower boun-
ded away form zero, i.e. there is no constant c with λk ≥ c > 0 for all eigenval-
ues λk. Instead the NTK is infinite dimensional and the eigenvalues converge to zero.
Therefore we replace lower eigenvalue bounds by a weaker coercivity in a negative
Sobolev norm.

2. We show that the gradient flow networks are uniformly bounded in positive Sobolev
norms.

3. The coercivity in negative Sobolev smoothness and the uniform bounds of positive
Sobolev smoothness allow us to derive L2 error bounds by interpolation inequalities.

4. All perturbation and concentration estimates are carried out in function space norms.
In particular, the concentration results need some careful consideration and are pro-
ven by chaining arguments.

As for several other NTK results, the error reduction originates form training the second
but last layer, yielding a non-convex optimization problem. Unlike other results, we do
not train the lower layers, because of changes in the argument to ensure uniform Sobolev
smoothness of the network during training. The coercivity assumption on the NTK is not
shown in this paper. It is known for ReLU activations, but we require smoother activations
and only provide a preliminary numerical test while leaving a rigorous analysis of the
resulting NTK for future work.

The proven approximation rates are lower than finite element, wavelet or spline rates
under the same smoothness assumptions. This seems to be a variant of the over-para-
metrization in the usual NTK arguments: the networks need some redundancy in their
degrees of freedom to aid the optimization.

The paper is organized as follows. Section 2.2 defines the neural networks and training
procedures and Section 2.3 contains the main result. The coercivity of the NTK is discussed
in Section 3. The proof is split into two parts. Section 5 provides an overview and all major
lemmas. The proof the these lemmas and further details are provided in Section 6. Finally,
to keep the paper self contained, Section 7 contains several facts from the literature.

Literature review

• Approximation: Some recent surveys are given in [8, 15, 52, 69]. Most of the results
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prove direct approximation guarantees as in (1.1) for a variety of classes K and net-
work architectures. They show state of the art or even superior performance of neu-
ral networks, but typically do not provide training methods and rely on hand-picked
weights, instead.

– Results for classical Sobolev and Besov regularity are in [25, 27, 43, 49, 64].

– [14, 46, 56, 72–74] show better than classical approximation rates for Sobolev
smoothness. Since classical methods are optimal (with regard to nonlinear width
and entropy), this implies that the weight assignment f → θ must be discontin-
uous.

– Function classes that are specifically tailored to neural networks are Barron spa-
ces for which approximation results are given in [5, 10, 36, 45, 58, 59, 70].

– Many papers address specialized function classes [53, 55], often from applica-
tions like PDEs [38, 39, 47, 51].

Besides approximation guarantees (1.1) many of the above papers also discuss limi-
tations of neural networks, for more information see [20].

• Optimization: We confine the literature overview to neural tangent kernel based ap-
proaches, which are most relevant to this paper. The NTK is introduced in [31] and
similar arguments together with convergence and perturbation analysis appear si-
multaneously in [2, 18, 19, 44], related optimization ideas are further developed in
many papers, including [3,6,13,35,40,42,48,50,61,62,75,76]. In particular, [4,12,33,63]
refine the analysis based on expansions of the target f in the NTK eigenbasis and are
closely related to the arguments in this paper, with the major difference that they rely
on the typical over-parametrized regime, whereas we do solemnly rely on smooth-
ness.

The papers [21, 23, 28, 41, 54, 68] discuss to what extend the linearization approach
of the NTK can describe real neural network training. Characterizations of the NTK
are fundamental for this paper and given [9, 11, 22, 34]. Convergence analysis for
optimizing NTK models directly are in [65, 66].

• Approximation and Optimization: Since the approximation question is under-para-
metrized and the optimization literature largely relies on over-parametrization there
is little work on optimization methods for approximation. The gap between approx-
imation theory and practice is considered in [1,26]. The previous paper [24] contains
comparable results for 1d shallow networks. Similar approximation results for gra-
dient flow trained shallow 1d networks are in [30,32], with slightly different assump-
tions on the target f , more general probability weighted L2 loss and an alternative
proof technique. Other approximation and optimization guarantees rely on alter-
native optimizers. [57, 60] use greedy methods and [29] uses a two step procedure
involving a classical and subsequent neural network approximation.

L2 error bounds are also proven in generalization error bounds for statistical estima-
tion. E.g. the papers [17, 37] show generalization errors for parallel fully connected
networks in over-parametrized regimes with Hölder continuity.
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New contributions. The paper contributes to the Optimization and Approximation cat-
egory above, for which the current literature is still rather scarce.

• The major contribution is an extension of current NTK convergence theory into un-
der-parametrized regimes. In this case, major assumptions in the literature, as e.g.
lower bounded eigenvalues of the NTK or separation of data samples, are not satis-
fied. We show that the missing assumptions can be compensated with smoothness
requirements of the learning target, the same ones that are typically found in approx-
imation theory for the same regime.

To utilize the smoothness of the target, we show that the smoothness of the network
remains uniformly bounded during training. This is achieved by an NTK type argu-
ment with estimates in more difficult function norms of broken regularity. The NTK
argument for the loss and for the smoothness yield a coupled system of differential
inequalities form which we derive error bounds.

For discrete loss, the NTK is a finite dimensional matrix, whereas for L2 loss, the NTK
is an infinite dimensional operator, which complicates lower eigenvalue bounds and
concentration inequalities.

• The prior work [24] contains similar results for shallow networks in one input dimen-
sion, which we extend to deep networks in multiple dimensions. We have sharpened
the gradient flow convergence result in Lemma 5.2. In the prior work, the NTK was
analyzed in operator norms, whereas here we prove continuity and concentration
for the corresponding integral kernel in Hölder norms. This entails a new continuity
analysis and changes the concentration inequalities form matrix Bernstein to chain-
ing, which was easier in inductive proofs over the depth of the network.

• Gradient descent or gradient flow error bounds in continuous L2 norms can be found
in [30,32], and [17,37] The first set of papers uses more general L2(P) losses, weighted
by a probability measure P of the training samples. For deep networks, they show
that the loss converges to zero if the learning target f is piecewise polynomial and
for shallow networks if the target is a increasing function. In contrast to the current
paper, these results use more general sampling distributions but more restrictive tar-
gets. The second set of papers trains networks on discrete samples and provides
generalization error bounds in continuous L2 norms. In these papers all layers are
trained, but only the last convex layer establishes the convergence. In our paper, we
train the second but last layer, which is non-convex.

• Other papers that provide errors in continuous L2 norms are [29, 57, 60] but do not
use gradient descent based methods.

2 Main result

2.1 Notations

• ., &,∼ denote less, bigger and equivalence up to a constant that can change in every
occurrence and is independent of smoothness and number of weights. It can depend
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on the number of layers L and input dimension d. Likewise, c is a generic constant
that can be different in each occurrence.

• [n] := {1, . . . , n}.
• ⊙: Element wise product.

• Ai· and A·j are i-th row and j-th column of matrix A, respectively.

2.2 Setup

Neural networks. We train fully connected deep neural networks without bias and a few
modifications: We only train the second but last layer (non-convex) and use gradient flow

instead of (stochastic) gradient descent. For x in some bounded domain D ⊂ Rd, the
networks are defined by

f 1(x) = W0x,

f ℓ+1(x) = Wℓn
− 1

2
ℓ

σ
(

f ℓ(x)
)
, ℓ = 1, . . . , L,

f (x) = f L+1(x),

(2.1)

which we abbreviate by f ℓ = f ℓ(x) if x is unimportant or understood from context. The
weights are initialized as follows:

WL ∈ {−1,+1}1×nL+1 i.i.d. Rademacher not trained,

WL−1 ∈ R
nℓ+1×nℓ , ℓ ∈ [L] i.i.d. N (0, 1) trained,

Wℓ ∈ R
nℓ+1×nℓ , ℓ ∈ [L− 2] i.i.d. N (0, 1) not trained,

W1 ∈ R
n1×d, ℓ ∈ [L] i.i.d. N (0, 1) not trained.

To keep the analysis simple, the second but last layer WL−1 is trained, while all other
weights remain unchanged during training. Training all layers does not negatively impact
the loss reduction, but may interfere with the smoothness of the trained networks that we
use to control error bounds. A more detailed discussion of the trained and untrained lay-
ers is given in Remarks 2.2 and 2.3 after the proof sketch. All layers have conventional
1/
√

nℓ scaling, except for the first, which ensures that the NTK is of unit size on the diag-
onal and is common in the literature [9, 11, 18, 22]. We also require that the layers are of
similar size, except for the last one which ensures scalar valued output of the network

m := nL−1, 1 = nL+1 ≤ nL ∼ · · · ∼ n1 ≥ d.

Since W0 is not approximately square as the other weight matrices, it is convenient to
define n0 := n1 and not as the number of columns of W0. This avoids special cases in
several formulas below.

As usual we denote all weights W0, . . . , WL combined by θ = [θι]ι∈I , indexed by some

index set I with indices of the form ι = (ij; ℓ) so that θι = Wℓ
ij. It will be useful to split the

index set level by level
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I =
L⋃

ℓ=0

I ℓ, I ℓ = {ι = (i, j; l) ∈ I | l = ℓ}.

Activation functions. We require comparatively smooth activation functions that have
no more that linear growth

|σ (x) | . |x|, (2.2)

uniformly bounded first derivatives

|σ(i)(x)| . 1, i = 1, 2, x ∈ R, (2.3)

and continuous second and third derivative with at most polynomial growth

|σ(i)(x)| ≤ p(x), i = 0, 1, 2, 3, 4, (2.4)

for some polynomial p and all x ∈ R.

Training. We wish to approximate a function f ∈ L2(D) by neural networks and there-
fore use the L2(D) norm for the loss function

L(θ) :=
1

2
‖ fθ − f‖2

L2(D).

In the usual split up into approximation and estimation error in the machine learning
literature, this corresponds to the former. It can also be understood as an infinite sample
limit of the mean squared loss. This implies that we perform convergence analysis in
an under-parametrized regime, different from the bulk of the neural network optimization
literature, which typically relies on over-parametrization.

For simplicity, we optimize the loss by gradient flow

d

dt
θ = −∇L(θ), (2.5)

and not gradient descent or stochastic gradient descent.

Smoothness. Since we are in an under-parametrized regime, we require smoothness
of f to guarantee meaningful convergence bounds. In this paper, we use Sobolev spaces

Hα(Sd−1) on the sphere D = S
d−1, with norms and scalar products denoted by ‖ · ‖Hα(Sd−1)

and 〈·, ·〉Hα(Sd−1). We drop the explicit reference to the domain Sd−1 when convenient. Def-

initions and required properties are summarized in Section 7.4.1.

Neural tangent kernel. The analysis is based on the neural tangent kernel, which for the
time being, we informally define as

Γ(x, y) = lim
width→∞

∑
ι∈IL−1

∂θι
f L+1
r (x)∂θι

f L+1
r (y), (2.6)
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summing over all weights θι on layer L− 1. The rigorous definition is in (5.1), based on
an recursive formula as in [31]. Our definition differs slightly form the standard version
because we only include weight indices ι ∈ IL−1 from layer L− 1. We require that it is
coercive in Sobolev norms

〈
f ,
∫

D
Γ(·, y) f (y) dy

〉

HS(Sd−1)
& ‖ f‖HS−β (2.7)

for some 0 ≤ α ≤ β/2, S ∈ {−α, α} and all f ∈ Hα(Sd−1). For ReLU activations and
regular NTK, including all layers, this property easily follows from [9, 11, 22] as shown in
Lemma 3.2. However, our convergence theory requires smoother activations and therefore
Section 3 provides some numerical evidence, while a rigorous analysis is left for future
research.

The paper [31] provides a recursive formula for the NTK, which in our simplified case
reduces to

Γ(x, y) = Σ̇L(x, y)ΣL−1(x, y),

where Σ̇L(x, y) and ΣL−1(x, y) are the covariances of two Gaussian processes that charac-

terize the forward evaluation of the networks WLn1/2
L σ̇

(
f L
)

and f L−1 in the infinite width
limit, see Section 5.1.1 for their rigorous definition. We require that

cΣ ≤ Σk(x, x) ≤ CΣ > 0 (2.8)

for all x, y ∈ D, k = 1, . . . , L and constants cΣ, CΣ ≥ 0. As we see in Section 3, the kernels
are zonal, i.e. they only depend on x⊺y. Hence, with a slight abuse of notation (2.8)

simplifies to Σk(x, x) = Σk(x⊺x) = Σ(1) 6= 0. In fact, for ReLU activation (which is not

sufficiently differentiable for our results) the paper [11] shows Σk(x, x) = 1.

2.3 Result

We are now ready to state the main result of the paper.

Theorem 2.1. Assume that the neural network (2.1)-(2.4) is trained by gradient flow (2.5). Let
κ(t) := fθ(t) − f be the residual and assume:

1. The NTK satisfies coercivity (2.7) for some 0 ≤ α ≤ β/2 and the forward process satisfies
(2.8).

2. All hidden layers are of similar size: n1 ∼ · · · ∼ nL−1 =: m.

3. Smoothness is bounded by 0 < α < 1/2.

4. 0 < γ < 1− α is an arbitrary number (used for Hölder continuity of the NTK in the proof).

5. For τ specified below, m is sufficiently large so that

‖κ(0)‖
1
2

H−α(Sd−1)
‖κ(0)‖

1
2

Hα(Sd−1)
m−

1
2 . 1,

cd

m
≤ 1,

τ

m
≤ 1.
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Then with probability at least 1− cL(e−m + e−τ) we have

‖κ(t)‖2
L2(Sd−1)

.

[
h

βγ
β−α ‖κ(0)‖

β
α

Hα(Sd−1)
+ ‖κ(0)‖

β
α

H−α(Sd−1)
e−ch

βγ
β−α β

2α t

] α
β

‖κ(0)‖Hα(Sd−1) (2.9)

for some h with

h . max

{[‖κ(0)‖
1
2

H−α(Sd−1)
‖κ(0)‖

1
2

Hα(Sd−1)√
m

] β−α
β(1+γ)−α

, c

√
d

m

}
, τ = h2γm,

and generic constant c ≥ 0, dependent on smoothness α, depth L and dimension d, independent of
width m and residual κ.

All assumptions are easy to verify, except for the coercivity of the NTK (2.7) and the
bounds (2.8) of the forward kernel, which we discuss in the next section. The error bound
(2.9) consists of two summands, only one of which depends on the gradient flow time t.
For large t, it converges to zero and we are left with the first error term. This results in
the following corollary, which provides a direct approximation result of type (1.1) for the
outcome of gradient flow training.

Corollary 2.1. Let all assumptions of Theorem 2.1 be satisfied. Then for m sufficiently large, with
high probability (both as in Theorem 2.1), we have

‖κ‖L2(Sd−1) . max

{[
C
(
κ(0)

)

m

] 1
4

αγ
β(1+γ)−α

,

[
d

m

] 1
4

αγ
β−α

}
‖κ(0)‖Hα(Sd−1),

C
(
κ(0)

)
= ‖κ(0)‖H−α(Sd−1)‖κ(0)‖Hα(Sd−1),

where κ := fθ(t) − f is the gradient flow residual for sufficiently large time t.

For traditional approximation methods, one would expect convergence rate m−α/d for
functions in the Sobolev space Hα. Our rates are lower, which seems to be a variation
of over-parametrization is disguise: In the over-parametrized as well as in our approxi-
mation regime the optimizer analysis seems to require some redundancy and thus more
weights than necessary for the approximation alone. Of course, we only provide upper
bounds and practical neural networks may perform better. Some preliminary experiments
in [24] show that shallow networks in one dimension outperform the theoretical bounds
but are still worse than classical approximation theory would suggest. In addition, the lin-
earization argument of the NTK results in smoothness measures in Hilbert spaces Hα and
not in larger Lp based smoothness spaces with p < 2 or even Barron spaces, as is common
for nonlinear approximation.

Remark 2.1. Although Theorem 2.1 and Corollary 2.1 seem to show dimension indepen-
dent convergence rates, they are not. Indeed, β depends on the dimension and smoothness
of the activation function as we see in Section 3 and Lemma 3.2.
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2.4 Proof sketch

Gradient flow. By standard arguments, the gradient flow error is given by

d

dt
‖κ‖2

L2 = −
∣∣∇L

(
θ(t)

)∣∣2, κ = fθ(t) − f ,

so that, it is sufficient to ensure that the gradient on the left-hand side is sufficiently large
as long as we have not achieved a favorable loss, yet. It is not difficult to show that the
gradient on the left-hand side is

∣∣∇L
(
θ(t)

)∣∣2 =
〈
κ, Hθ(t)κ

〉

given by the integral operator and kernel

(
Hθ(t)κ

)
(x) =

∫ d−1

S

Γ̂θ(t)(x, y)κ dy,

Γ̂θ(t)(x, y) = ∑
ι∈IL−1

∂θι
fθ(t)(x)∂θι

fθ(t)(y).

Linearization. While lower bounds for the gradient |∇L(θ(t))|2 , or equivalently the in-
tegral kernel Γ̂θ(t), are not well understood, they are known for the infinite width limit at

the initial weights θ(0) and ReLU activations

H∗ := lim
width→∞

Hθ(0),

for which we have
〈κ, H∗κ〉 & ‖κ‖2

H−β .

Combining the results, with adding and subtracting terms, we find that

d

dt
‖κ‖2

L2 = − 〈κ, H∗κ〉 −
〈
κ, [Hθ(0) − H∗]κ

〉
−
〈
κ, [Hθ(t) − Hθ(0)]κ

〉

. −‖κ‖2
H−β −

〈
κ, [Hθ(0) − H∗]κ

〉
−
〈
κ, [Hθ(t) − Hθ(0)]κ

〉
.

The fundamental insight from NTK convergence proofs is that

• Weights do not move far from their initial (Lemma 5.5)

‖θ(t)− θ(0)‖ ≪ 1.

• The operators Hθ depend continuously on θ (Lemma 5.3), so that

Hθ(t) − Hθ(0) ≈ 0. (2.10)

• The operators Hθ(0) concentrate near the infinite width limit (Lemma 5.4)

H∗ − Hθ(0) ≈ 0. (2.11)

As a result, the gradient flow training is close to a linear evolution equation with opera-
tor H∗ and bounded by

d

dt
‖κ‖2

L2 . −‖κ‖2
H−β + perturbations.
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Gradient flow bounds in L2. Unfortunately, the last inequality is in itself not strong
enough to show convergence. This would be ensured by Grönwall’s inequality if the
norms on the left and right-hand side would be the same. In our case, however, we can
have large ‖κ(t)‖L2 , while at the same time the negative Sobolev norm ‖κ(t)‖H−β is small
and thus does not yield sufficient error decay (e.g. for highly oscillatory functions). This
problem is addressed with an interpolation inequality (in fact, we use a slight variation
for sharper results, which we do not address here for simplicity)

‖ · ‖L2 . ‖ · ‖
α

α+β

H−β‖ · ‖
β

α+β

Hα ⇒ ‖ · ‖H−β & ‖ · ‖
α+β

α

L2 ‖ · ‖
− β

α
Hα .

Hence, if we can uniformly bound the smoothness ‖κ(t)‖Hα ≤ γ for all t, we obtain

d

dt
‖κ‖2

L2 . −‖κ‖
α+β

α

L2 γ−
β
α + perturbations

with same norms on both sides of the equation, which allows us to show convergence.

Uniform bounds for smoothness. From the last paragraph, it remains to show that the
smoothness ‖κ(t)‖Hα ≤ γ is uniformly bounded throughout the gradient flow. To this
end, we analyze the evolution of (d/dt)‖κ(t)‖2

Hα along the same lines as the L2 loss above.
This entails several difficulties because we need to establish the NTK continuity (2.10) and
concentration (2.11) in stronger norms than usual.

The prior work [24] proves convergence in the L2 and Hα norms for shallow 1d net-

works, as motivated above. In this paper, we consider the evolution in H−β and Hα in-
stead to avoid some unsharp embedding inequalities and arrive at a coupled system of
differential inequalities

1

2

d

dt
‖κ‖2

H−α . −c‖κ‖2
2α+β

2α
H−α ‖κ‖−2

β
2α

Hα + h
βγ

β−α‖κ‖2
H−α ,

1

2

d

dt
‖κ‖2

Hα . −c‖κ‖2
β

2α
H−α‖κ‖2

2α−β
2α

Hα + hγ‖κ‖Hα‖κ‖H−α ,

where the last summand in each line constitutes the perturbation terms. This system pro-
vides the stated error bounds in L2, again by interpolation.

Untrained layers

Remark 2.2. As we have seen above, the gradient flow (and similarly gradient descent)
loss decays by

d

dt
‖κ‖2

L2(Sd−1)
= −‖∇ fθ‖2 = −∑

ι∈I
|∂θι

fθ |2.

Hence, for convergence, it is sufficient to show that the gradient is lower bounded when-
ever the loss ‖κ(t)‖2 is large. To ease proves, one may drop (non-negative) terms in the
sum on the left-hand side and show lower bounds only for the remaining ones, e.g.

d

dt
‖κ‖2

L2(Sd−1)
= −∑

ι∈I
|∂θι

fθ |2 ≤ − ∑
ι∈IL−1

|∂θι
fθ |2 ≤ · · · .
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Indeed, it is not uncommon in the current literature to train all layers, but only retain
an active error reduction from the last or second but last layers. The latter is non-convex
and considered in this paper.

However, it is not straight forward to allow training of all layers as indicated above
because we must also control the smoothness

d

dt
‖κ‖2

Hα(Sd−1)
= −∑

ι∈I

〈
κ, (∂θι

fθ)
(
∂θι
L(θ)

)〉
Hα(Sd−1)

.

These summands are no longer symmetric and it is no longer trivial to show if they are
non-negative or can be dropped.

Remark 2.3. Ideally, a neural network convergence analysis should not drop gradient
terms as indicated in the last remark, but provide an active loss reduction from all layers.
In our analysis, we explicitly use WL

ij = ±1 in Lemma 5.1 to obtain a simple formula for

the empirical NTK that is used throughout the text. In order to include deeper layers in
the convergence analysis, WL

ij has to be replaced with products of upstream layers in the

chain rule. If this allows analogous continuity and concentration estimates is left for future
work.

3 Coercivity of the NTK

While most assumptions of Theorem 2.1 are easy to verify, the coercivity (2.7) is less clear.
This section contains some results for the NTK Γ(x, y) in this paper, which only considers
the second but last layer, as well as the regular NTK defined by the infinite width limit

Θ(x, y) = lim
width→∞

∑
ι∈I

∂θι
f L+1(x)∂θι

f L+1(y)

of all layers. Coercivity easily follows once we understand the NTK’s spectral decompo-
sition. To this end, first note that Γ(x, y) and Θ(x, y) are both zonal kernels, i.e. they only
depend on x⊺y, and as consequence their eigenfunctions are spherical harmonics.

Lemma 3.1 ( [22, Lemma 1]). The eigenfunctions of the kernels Γ(x, y) and Θ(x, y) on the sphere
with uniform measure are spherical harmonics.

Proof. See [22, Lemma 1] and the discussion thereafter.

Hence, it is sufficient to show lower bounds for the eigenvalues. These are provided
in [9, 11, 22] under slightly different assumptions than required in this paper:

1. They use all layers Θ(x, y) instead of only the second but last one in Γ(x, y). (The ref-
erence [18] does consider Γ(x, y) and shows that the eigenvalues are strictly positive
in the over-parametrized regime with discrete loss and non-degenerate data.)

2. They use bias, whereas we do not. We can however easily introduce bias into the first
layer by the usual technique to incorporate one fixed input component x0 = 1.
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3. The cited papers use ReLU activations, which do not satisfy the third derivative
smoothness requirements (2.3).

Anyways, with these modified assumptions, it is easy to derive coercivity from the NTK’s
RKHS in [9, 11, 22].

Lemma 3.2. Let Θ(x, y) be the neural tangent kernel for a fully connected neural network with

bias on the sphere Sd−1 with ReLU activation. Then for any α ∈ R,

〈 f , LΘ f 〉Hα(Sd−1) & ‖ f‖2

Hα− d
2 (Sd−1)

,

where LΘ is the integral operator with kernel Θ(x, y).

The proof is given at the end of Section 7.4.3. Note that this implies β = d/2 and thus
Theorem 2.1 cannot be expected to be dimension independent. In fact, due to smoother
activations, the kernel Γ(x, y) is expected to be more smoothing than Θ(x, y) resulting in
a faster decay of the eigenvalues and larger β. This leads to Sobolev coercivity (Lem-
mas 7.12 and 3.2) as long as the decay is polynomial, which we only verify numerically in
this paper, as shown in Fig. 3.1 for n = 100 uniform samples on the d = 2 dimensional
sphere and L− 1 = 1 hidden layers of width m = 1000. The plot uses log-log axes so that
straight lines represent polynomial decay. As expected, ReLU and ELU activations show
polynomials decay with higher order for the latter, which are smoother. For comparison
the C∞ activation GELU seems to show super polynomial decay. However, the results are
preliminary and have to be considered carefully:

Figure 3.1: Eigenvalues of the NTK Γ(x, y) for different activation functions.
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1. The oscillations at the end, are for eigenvalues of size ∼ 10−7, which is machine
accuracy for floating point numbers.

2. Most eigenvalues are smaller than the difference between the empirical NTK and the
actual NTK. For comparison, the difference between two randomly sampled empiri-
cal NTKs (in matrix norm) is: ReLU: 0.268, ELU: 0.693, GELU: 0.166.

3. According to [9], for shallow networks without bias, every other eigenvalue of the
NTK should be zero. This is not clear from the experiments (which do not use bias,
but have one more layer), likely because of the large errors in the previous item.

4. The errors should be better for wider hidden layers, but since the networks involve
dense matrices, their size quickly becomes substantial.

In conclusion, the experiments show the expected polynomial decay of NTK eigenvalues
and activations with singularities in higher derivatives, but the results have to be regraded
with care.

4 Numerical experiments

This section contains some preliminary numerical experiments to assess the convergence
rates in Theorem 2.1. We train

• A fully connected network with bias. Width, depth and input dimension vary and
are given in the results.

• All layers are trained.

• We use 1000 samples to approximate the L2(Sd−1) norm for training.

• The networks are trained by 20000 gradient descent steps with learning rate 0.05.

• The target function is the density function of the multivariate normal N (e1, 1), cen-
tered at the unit basis vector e1 with variance one.

• All reported errors and rates are the average over three runs.

Since the target function is infinitely differentiable, it is contained in all possible Sobo-
lev spaces in Theorem 2.1. Optimizing the convergence rate with respect to the allowed α,
we obtain rates of at most O(m−0.084) for dimension d = 3 and O(m−0.054) for dimension
d = 4. In classical approximation theory, for piecewise linear approximation, comparable

to ReLU, one would expect approximation rates ofO(m−2/(d−1)) on the sphere Sd−1. Very
deep networks can theoretically achieve much higher rates, see e.g. the survey [15].

In Table 4.1 and Fig. 4.1, the numerical convergence rates fluctuate due to random
samples and random initialization. Their value is around 0.5 for dimension 3 and lower
for dimension 4. This is better than the guarantees in Theorem 2.1, but worse than the
theoretical expectation. This replicates earlier more extensive studies for shallow networks
in one dimension in [24].
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Table 4.1: Errors and estimated convergence rates for fully connected networks.

Dimension 3

Depth 3 Depth 4

Width L2 Error Rate L2 Error Rate

20 0.002653 0.002088

40 0.001765 0.587620 0.001446 0.529989

60 0.001663 0.147412 0.001108 0.657242

80 0.001528 0.294699 0.001091 0.054481

100 0.001217 1.020825 0.000936 0.684660

Dimension 4

Depth 3 Depth 4

Width L2 Error Rate L2 Error Rate

20 0.003048 0.002422

40 0.002426 0.329028 0.001589 0.608487

60 0.002203 0.238263 0.001468 0.194916

80 0.002266 -0.098785 0.001381 0.211418

100 0.002014 0.528274 0.001448 -0.209777

Figure 4.1: Errors for fully connected networks.

5 Proof overview

5.1 Preliminaries

5.1.1 Neural tangent kernel

In this section, we recall the definition of the neural tangent kernel (NTK) and setup nota-
tions for its empirical variants. Our definition differs slightly from the literature because
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we only train the second but last layer. Throughout the paper, we only need the definitions
as stated, not that they are the infinite width limit of the network derivatives as stated in
(2.6), although we sometimes refer to this for motivation.

As usual, we start with the recursive definition of the covariances

Σℓ+1(x, y) := Eu,v∼N (0,A) [σ (u) σ (v)] , A =

[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]
, Σ0(x, y) = x⊺y,

which define a Gaussian process that is the infinite width limit of the forward evaluation

of the hidden layer f ℓ(x), see [31]. Likewise, we define

Σ̇ℓ+1(x, y) = Eu,v∼N (0,A) [σ̇ (u) σ̇ (v)] , A =

[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]

with activation function of the last layer is exchanged with its derivative. Then the neural
tangent kernel (NTK) is defined by

Γ(x, y) := Σ̇L(x, y)ΣL−1(x, y). (5.1)

The paper [31] shows that all three definitions above are infinite width limits of the corre-
sponding empirical processes (denoted with an extra hat ·̂)

Σ̂ℓ(x, y) :=
1

nℓ

nℓ

∑
r=1

σ
(

f ℓr (x)
)
σ
(

f ℓr (y)
)
=

1

nℓ

σ
(

f ℓ(x)
)⊺

σ
(

f ℓ(y)
)
,

ˆ̇Σℓ(x, y) :=
1

nℓ

nℓ

∑
r=1

σ̇
(

f ℓr (x)
)
σ̇
(

f ℓr (y)
)
=

1

nℓ

σ̇
(

f ℓ(x)
)⊺

σ̇
(

f ℓ(y)
)
,

(5.2)

and
Γ̂(x, y) := ∑

ι∈IL−1

∂θι
f L+1
r (x)∂θι

f L+1
r (y).

Note that unlike the usual definition of the NTK, we only include weights from the second

but last layer. Formally, we do not show that Σℓ, Σ̇ℓ and Γ arise as infinite width limits of

the empirical versions Σ̂ℓ, ˆ̇Σℓ and Γ̂, but rather concentration inequalities between them.
The next lemma shows that the empirical kernels satisfy the same identity (5.1) as their

limits.

Lemma 5.1. Assume that WL
ij ∈ {−1,+1}. Then

Γ̂(x, y) = ˆ̇ΣL(x, y)Σ̂L−1(x, y).

Proof. By definitions of f L and f L−1, we have

∂WL−1
ij

f L+1
r =

nL

∑
1=r

WL
·rn
− 1

2
L ∂WL−1

ij
σ
(

f L
r

)
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=
nL

∑
1=r

WL
·rn
− 1

2
L σ̇

(
f L
r

)
∂WL−1

ij
f L
r

=
nL

∑
1=r

WL
·rn
− 1

2
L σ̇

(
f L
r

)
δirn

− 1
2

L−1σ
(

f L−1
j

)

= WL
·i n
− 1

2
L n

− 1
2

L−1σ̇
(

f L
i

)
σ
(

f L−1
j

)
.

It follows that

Γ̂(x, y) =
nL

∑
i=1

nL−1

∑
j=1

∂WL−1
ij

f L+1
r (x)∂WL−1

ij
f L+1
r (y)

=
1

nL

nL

∑
i=1

1

nL−1

nL−1

∑
j=1

∣∣WL
·i
∣∣2σ̇
(

f L
i (x)

)
σ̇
(

f L
i (y)

)
σ
(

f L−1
j (x)

)
σ
(

f L−1
j (y)

)

= ˆ̇ΣL(x, y)Σ̂L−1(x, y),

where in the last step we have used that |WL
·i |2 = 1 by assumption and the definitions of

ˆ̇ΣL and Σ̂L−1.

The NTK and empirical NTK induce integral operators, which we denote by

H f :=
∫

D
Γ(·, y) f (y)dy, Hθ f :=

∫

D
Γ̂(·, y) f (y)dy.

The last definition makes the dependence on the weights explicit, which is hidden in Γ̂.

5.1.2 Norms

We use several norms for our analysis.

1. ℓ2 and matrix norms: ‖ · ‖ denotes the ℓ2 norm when applied to a vector and the
matrix norm when applied to a matrix.

2. Hölder norms ‖ · ‖C0;α(D;V) for functions f : D ⊂ Rd → V into some normed vector

space V, with Hölder continuity measured in the V norm

‖ f‖C0(D;V) := sup
x∈D

‖ f (x)‖V + sup
x 6=x̄∈D

‖ f (x)− f (x̄)‖V

‖x− x̄‖α
U

.

We drop V in ‖ · ‖C0;α(D) when V = ℓ2 and D in ‖ · ‖C0;α when it is understood from

context. We also use alternate definitions as the supremum over the finite difference
operator

∆0
h f (x) = f (x), ∆α

h f (x) = ‖h‖−α
U [ f (x + h)− f (x)], α > 0,

see Section 7.1 for the full definitions and basic properties.
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3. Mixed Hölder norms ‖ · ‖C0;α,β(D;V) for functions f : D× D ⊂ Rd → V of two vari-

ables. They measure the supremum of all mixed finite difference operators ∆s
x,hx

∆t
y,hy

for any s ∈ {0, α} and t ∈ {0, β}, similar to Sobolev spaces with mixed smoothness.
As for Hölder norms for one variable, we use two different definitions, which are
provided in Section 7.1.

4. Sobolev norms on the sphere denoted by ‖ · ‖Hα(Sd−1). Definitions and properties are

provided in Section 7.4.1. The bulk of the analysis is carried out in Hölder norms,
which control Sobolev norms by

‖ · ‖Hα(Sd−1) . ‖ · ‖C0;α+ǫ(Sd−1)

for ǫ > 0, see Lemma 7.9.

5. Generic Smoothness norms ‖ · ‖Hα , α ∈ R for associated Hilbert spaces Hα. These
are used in abstract convergence results and later replaced by Sobolev norms.

6. Orlicz norms ‖ · ‖ψi
for i = 1, 2 measure sub-Gaussian and sub-exponential concen-

tration. Some required results are summarized in Section 7.2.

7. Gaussian weighted L2 norms defined by

‖ f‖2
N = 〈 f , f 〉N , 〈 f , g〉N =

∫

R

f (x)2dN (0, 1)(x).

5.1.3 Neural networks

Many results use a generic activation function denoted by σ with derivative σ̇, which is
allowed to change in each layer, although we always use the same symbol for notational
simplicity. They satisfy the linear growth condition

|σ (x)| . |x|, (5.3)

are Lipschitz
|σ (x)− σ (x̄)| . |x− x̄|, (5.4)

and have uniformly bounded derivatives

|σ̇ (x)| . 1. (5.5)

5.2 Abstract convergence result

We first show convergence in a slightly generalized setting. To this end, we consider
neural networks as maps from the parameter space to the square integrable functions
f· : Θ ⊂ ℓ2(R

m) → L2(D) defined by θ → fθ(·). More generally, for the time being, we
replace L2(D) by an arbitrary Hilbert space H and the network by an arbitrary Fréchet
differentiable function

f : Θ = ℓ2(R
m) → H, θ → fθ .
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For a target function f ∈ H, we define the loss

L(θ) =
1

2
‖ fθ − f‖2

H,

and the corresponding gradient flow for θ(t),

d

dt
θ(t) = −∇L(θ) (5.6)

initialized with random θ(0). The convergence analysis relies on a regime where the evo-
lution of the gradient flow is governed by its linearization

Hθ := D fθ(D fθ)
∗,

where ∗ denotes the adjoint and Hθ is the empirical NTK if fθ is a neural network. To
describe the smoothness of the target and spectral properties of Hθ , we use a series of
Hilbert spaces Hα for some smoothness index α ∈ R so that H0 = H. As stated in the
lemma below, they satisfy interpolation inequalities and coercivity conditions. In this ab-
stract framework, we show convergence as follows.

Lemma 5.2. Let θ(t) be defined by the gradient flow (5.6), κ = fθ − f be the residual and m be
a number that satisfies all assumptions below, which is typically related to the degrees of freedom.
For constants c∞, c0, β, γ > 0 and 0 ≤ α ≤ β/2, functions p0(m), p∞(τ), pL(m, h) and weight
norm ‖·‖∗ assume that:

1. With probability at least 1− p0(m), the distance of the weights from their initial value is
controlled by

‖θ(t)− θ(0)‖∗ ≤ 1 ⇒ ‖θ(t)− θ(0)‖∗ .
√

2

m

∫ t

0
‖κ(τ)‖H0 dτ. (5.7)

2. The norms and scalar product satisfy interpolation and continuity

‖ · ‖Hb . ‖ · ‖
c−b
c−a
Ha ‖ · ‖

b−a
c−a
Hc , 〈·, ·〉H−α . ‖ · ‖H−3α‖ · ‖Hα (5.8)

for all −α− β ≤ a ≤ b ≤ c ≤ α.

3. Let H : Hα → H−α be an operator that satisfies the concentration inequality

Pr

[
‖H − Hθ(0)‖Hα←H−α ≥ c

√
d

m
+

√
c∞τ

m

]
≤ p∞(τ) (5.9)

for all τ with
√

c∞τ/m ≤ 1. (In our application H is the NTK and Hθ(0) the empirical
NTK.)

4. Hölder continuity with high probability

Pr
[
∃ θ̄∈Θ with ‖θ̄−θ(0)‖∗ ≤ h and ‖Hθ̄−Hθ(0)‖Hα←H−α ≥ c0hγ

]
≤ pL(m, h) (5.10)

for all 0 < h ≤ 1.
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5. H is coercive for S ∈ {−α, α},

‖v‖2
HS−β . 〈v, Hv〉HS , v ∈ HS−β. (5.11)

6. For τ specified below, m is sufficiently large so that

‖κ(0)‖
1
2
H−α‖κ(0)‖

1
2
Hαm−

1
2 . 1,

cd

m
≤ 1,

τ

m
≤ 1.

Then with probability at least 1− p0(m)− p∞(τ)− pL(m, h) we have

‖κ‖2
H−α .

[
h

βγ
β−α‖κ(0)‖

β
α
Hα + ‖κ(0)‖

β
α
H−αe−ch

βγ
β−α β

2α t

] 2α
β

,

‖κ‖2
Hα . ‖κ(0)‖2

Hα

for some h with

h . max

{[
‖κ(0)‖

1
2
H−α‖κ(0)‖

1
2
Hα√

m

] β−α
β(1+γ)−α

, c

√
d

m

}
, τ = h2γm,

and generic constants c ≥ 0 dependent of α and independent of κ and m.

We defer the proof to Section 6.1 and only consider a sketch here. As for standard NTK
arguments, the proof is based on the following observation:

1

2

d

dt
‖κ‖2 = −

〈
κ, Hθ(t) κ

〉
≈ − 〈κ, H κ〉 , (5.12)

which can be shown by a short computation. The last step relies on the observation
that empirical NTK stays close to its initial Hθ(t) ≈ Hθ(0) and that the initial is close to
the infinite width limit Hθ(0) ≈ H. However, since we are not in an over-parametrized
regime, the NTK’s eigenvalues can be arbitrarily close to zero and we only have coercivity
in the weaker norm 〈κ, H κ〉 & ‖κ‖H−α , which is not sufficient to show convergence by
e.g. Grönwall’s inequality. To avoid this problem, we derive a closely related system of
coupled ODEs

1

2

d

dt
‖κ‖2

H−α . −c‖κ‖2
2α+β

2α
H−α ‖κ‖−2

β
2α

Hα + h
βγ

β−α‖κ‖2
H−α ,

1

2

d

dt
‖κ‖2

Hα . −c‖κ‖2
β

2α
H−α‖κ‖2

2α−β
2α

Hα + hγ‖κ‖Hα‖κ‖H−α .

The first one is used to bound the error in the H−α norm and the second ensures that the
smoothness of the residual κ(t) is uniformly bounded during gradient flow. Together with
the interpolation inequality (5.8), this shows convergence in theH = H0 norm.

It remains to verify all assumption of Lemma 5.2, which we do in the following subsec-
tions. Details are provided in Section 6.5.
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5.3 Assumption (5.10): Hölder continuity

We use a bar ·̄ to denote perturbation, in particular W̄ℓ is a perturbed weight, and ¯̂Γ is the
corresponding empirical neural tangent kernel. In order to obtain continuity results, we
require that the weight matrices and domain are bounded

‖Wℓ‖n−
1
2

ℓ
. 1, ‖W̄ℓ‖n−

1
2

ℓ
. 1, ‖x‖ . 1, ∀ x ∈ D. (5.13)

For the initial weights Wℓ, this holds with high probability because its entries are i.i.d.
standard Gaussian. For perturbed weights we only need continuity bounds under the

condition that ‖θ − θ̄‖∗ ≤ 1 or equivalently that ‖Wℓ − W̄ℓ‖n−1/2
ℓ

≤ 1 so that the weight

bound of the perturbation W̄ℓ follow from the bounds for Wℓ. With this setup, we show
the following lemma.

Lemma 5.3. Assume that σ and σ̇ satisfy the growth and Lipschitz conditions (5.3), (5.4) and may
be different in each layer. Assume the weights, perturbed weights and domain are bounded (5.13)
and nL ∼ nL−1 ∼ · · · ∼ n1. Then for 0 < α < 1 and n0 := n1,

‖Γ̂‖C0;α,α . 1, ‖ ¯̂Γ‖C0;α,α . 1,

‖Γ̂− ¯̂Γ‖C0;α,α .
n0

nL

[
L−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

.

The proof is at the end of Section 6.2. The lemma shows that the kernels ‖Γ̂ℓ − ¯̂Γℓ‖C0;α,α

are Hölder continuous (with respect to weights) in a Hölder norm (with respect to x and y).
This directly implies that the induced integral operators ‖Hθ − Hθ̄‖Hα←H−α are bounded
in operator norms induced by Sobolev norms (up to ǫ less smoothness), which implies
assumption (5.10), see Section 6.5 for details.

5.4 Assumption (5.9): Concentration

For concentration, we need to show that the empirical NTK is close to the NTK, i.e. that
‖H−Hθ(0)‖Hα←H−α is small in the operator norm. To this end, it suffices to bound the cor-

responding integral kernels ‖Γ− Γ̂‖C0;α+ǫ,α+ǫ in Hölder norms with slightly higher smooth-
ness, see Lemma 7.10. Concentration is then provided by the following lemma. See the
end of Section 6.3 for a proof and Section 6.5 for its application in the proof of the main
result.

Lemma 5.4. Let α=β=1/2 and k=0, . . . , L−1.

1. Assume that WL ∈ {−1,+1} with probability 1/2 each.

2. Assume that all Wk are are i.i.d. standard normal.

3. Assume that σ and σ̇ satisfy the growth condition (5.3), have uniformly bounded derivatives

(5.5), derivatives σ(i), i = 0, . . . , 3, are continuous and have at most polynomial growth for
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x→ ±∞ and the scaled activations satisfy

∥∥∂i(σa)
∥∥

N
. 1,

∥∥∂i(σ̇a)
∥∥

N
. 1, a ∈ {Σk(x, x) : x ∈ D}, i = 1, . . . , 3

with σa(x) := σ(ax). The activation functions may be different in each layer.

4. For all x ∈ D assume
Σk(x, x) ≥ cΣ > 0.

5. The widths satisfy nℓ & n1 =: n0 for all ℓ = 0, . . . , L.

Then, with probability at least

1− c
L−1

∑
k=1

e−nk + e−uk , (5.14)

we have

‖Γ̂− Γ‖C0;α,β .
L−1

∑
k=0

n0

nk

[√
d +
√

uk√
nk

+
d + uk

nk

]
≤ 1

2
cΣ

for all u1, . . . , uL−1 ≥ 0 sufficiently small so that the rightmost inequality holds.

5.5 Assumption (5.7): Weights stay close to initial

Assumption (5.7) follows from the following lemma, which shows that the weights stay
close to their random initialization. Again, the estimates are proven in Hölder norms,
which control the relevant Sobolev norms, see Section 6.5 for details.

Lemma 5.5. Assume that σ satisfies the growth and derivative bounds (5.3), (5.5) and may be
different in each layer. Assume the weights are defined by the gradient flow (2.5) and satisfy

‖Wℓ(0)‖n−
1
2

ℓ
. 1, ℓ = 0, . . . , L,

‖Wℓ(0)−Wℓ(τ)‖n−
1
2

ℓ
. 1, 0 ≤ τ < t.

Then

‖Wℓ(t)−Wℓ(0)‖n−
1
2

ℓ
.

n
1
2
0

nℓ

∫ t

0
‖κ‖

C0(D)′ dx dτ,

where C0(D)
′

is the dual space of C0(D) and n0 := n1.

6 Proof of the main result

6.1 Proof of Lemma 5.2: Generalized convergence

NTK evolution. In this section, we prove the convergence result in Lemma 5.2. Let us
first recall the evolution of the loss in NTK theory. The Fréchet derivative of the loss is
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DL(θ)v = 〈κ, (D fθ)v〉 = 〈(D fθ)
∗κ, v〉 , ∀ v ∈ Θ,

and the gradient of the loss is the Riesz lift of the derivative

∇L(θ) = (D fθ)
∗κ. (6.1)

Using the chain rule, we obtain the evolution of the residual

dκ

dt
= (D fθ)

dθ

dt
= −(D fθ)∇L(θ) = −(D fθ)(D fθ)

∗κ =: Hθκ, (6.2)

and the loss in anyHS norm

1

2

d

dt
‖κ‖2

HS =

〈
κ,

dκ

dt

〉

HS

= − 〈κ, (D fθ)(D fθ)
∗κ〉HS = − 〈κ, Hθ κ〉HS (6.3)

with
Hθ := (D fθ)(D fθ)

∗.

Proof of Lemma 5.2. For the time being, we assume that the weights remain within a finite
distance

h := max

{
sup
t≤T

‖θ(t)− θ(0)‖∗ , c

√
d

m

}
≤ 1 (6.4)

to their initial up to a time T to be determined below, but sufficiently small so that the
last inequality holds. With this condition, we can bound the time derivatives of the loss
‖κ‖H−α and the smoothness ‖κ‖Hα . For S ∈ {−α, α} and respective S̄ ∈ {−3α, α}, we have
already calculated the exact evolution in (6.3), which we estimate by

1

2

d

dt
‖κ‖2

HS = −
〈
κ, Hθ(t)κ

〉
HS

= − 〈κ, Hκ〉HS +
〈
κ, (H − Hθ(0))κ

〉
HS +

〈
κ, (Hθ(0) − Hθ(t))κ

〉
HS .

We estimate the last two summands as

〈κ, [. . . ]κ〉HS ≤ ‖κ‖HS̄‖[. . . ]κ‖Hα ≤ ‖κ‖HS̄‖[. . . ]‖Hα←H−α‖κ‖H−α ,

where S̄ = α for S = α and S̄ = −3α for S = −α by assumption 2 of Lemma 5.2. Then, we
obtain

1

2

d

dt
‖κ‖2

HS ≤ − 〈κ, Hκ〉HS + ‖H − Hθ(0)‖Hα←H−α‖κ‖HS̄‖κ‖H−α

+ ‖Hθ(0) − Hθ(t)‖Hα←H−α‖κ‖HS̄‖κ‖H−α

≤ − 〈κ, Hκ〉HS +

[
c

√
d

m
+

√
c∞τ

m
+ c0hγ

]
‖κ‖HS̄‖κ‖H−α

. −c‖κ‖2
HS−β + hγ‖κ‖HS̄‖κ‖H−α
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with probability at least 1− p∞(τ)− pL(m, h), where the second but last inequality follows
from assumptions (5.9), (5.10) and in the last inequality we have used the coercivity, (6.4)
and chosen τ = h2γm so that

√
c∞τ/m . hγ. The right-hand side contains one negative

term −‖κ‖2
HS−β , which decreases the residual (d/dt)‖κ‖2

HS , and one positive term which

enlarges it. In the following, we ensure that these terms are properly balanced.
We eliminate all norms that are not ‖κ‖H−α or ‖κ‖Hα so that we obtain a closed system

of ODEs in these two variables. We begin with ‖κ‖HS̄ , which is already of the right type if

S̄ = α but ‖κ‖H−3α for S̄ = −α. Since 0 < α < β/2, we have −α− β ≤ −3α ≤ α so that we
can invoke the interpolation inequality from assumption 2 of Lemma 5.2

‖v‖H−3α ≤ ‖v‖
2α
β

H−α−β‖v‖
β−2α

β

H−α .

Together with Young’s inequality, this implies

hγ‖κ‖HS̄‖κ‖H−α ≤ hγ‖κ‖
2α
β

H−α−β‖κ‖
2β−2α

β

H−α

≤ α

β

[
c‖κ‖

2α
β

H−α−β

] β
α

+
β− α

β

[
c−1hγ‖κ‖

2β−2α
β

H−α

] β
β−α

=
α

β
c

β
α ‖κ‖2

H−α−β + c
β

β−α h
γβ

β−α ‖κ‖2
H−α

for any generic constant c > 0. Choosing this constant sufficiently small and plugging
into the evolution equation for ‖κ‖H−α , we obtain

1

2

d

dt
‖κ‖2

H−α . −c‖κ‖2
H−α−β + h

γβ
β−α ‖κ‖2

H−α

with a different generic constant c. Hence, together with the choice S = α, we arrive at the
system of ODEs

1

2

d

dt
‖κ‖2

H−α . −c‖κ‖2
H−α−β + h

γβ
β−α‖κ‖2

H−α ,

1

2

d

dt
‖κ‖2

Hα . −c‖κ‖2
Hα−β + hγ‖κ‖Hα‖κ‖H−α .

Next, we eliminate the ‖κ‖2
H−α−β and ‖κ‖2

Hα−β norms. Since 0 < α < β/2 implies−α− β <

α− β < −α < α the interpolation inequalities in assumption 2 of Lemma 5.2 yield

‖κ‖H−α ≤ ‖κ‖
2α

2α+β

H−α−β‖κ‖
β

2α+β

Hα ⇒ ‖κ‖H−α−β ≥ ‖κ‖
2α+β

2α
H−α ‖κ‖−

β
2α
Hα ,

‖κ‖H−α ≤ ‖κ‖
2α
β

Hα−β‖κ‖
β−2α

β

Hα ⇒ ‖κ‖Hα−β ≥ ‖κ‖
β

2α
H−α‖κ‖

2α−β
2α
Hα ,

so that we obtain the differential inequalities

1

2

d

dt
‖κ‖2

H−α . −c‖κ‖2
2α+β

2α
H−α ‖κ‖−2

β
2α

Hα + h
βγ

β−α‖κ‖2
H−α

1

2

d

dt
‖κ‖2

Hα . −c‖κ‖2
β

2α
H−α‖κ‖2

2α−β
2α

Hα + hγ‖κ‖Hα‖κ‖H−α .
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Bounds for the solutions are provided by Lemma 6.1 with x = ‖κ‖2
H−α , y = ‖κ‖2

Hα and
ρ = β/(2α) ≥ 1 ≥ 1/2: Given that

‖κ‖2
H−α & h

2 γα
β−α ‖κ(0)‖2

Hα , (6.5)

i.e. the error ‖κ‖H−α is still larger than the right-hand side, which will be our final error
bound, we have

‖κ‖2
H−α .

[
h

βγ
β−α‖κ(0)‖

β
α
Hα + ‖κ(0)‖

β
α
H−αe−ch

βγ
β−α β

2α t

] 2α
β

, (6.6)

‖κ‖2
Hα . ‖κ(0)‖2

Hα . (6.7)

The second condition B(t) ≥ 0 in Lemma 6.1 is equivalent to ax
ρ
0 ≥ by

ρ
0 (notation of the

lemma), which in our case is identical to (6.5) at t = 0. Notice that the right-hand side of
(6.5) corresponds to the first summand in the ‖κ‖2

H−α bound so that the second summand
must dominate and we obtain the simpler expression

‖κ‖2
H−α . ‖κ(0)‖2

H−αe−ch
βγ

β−α t,

‖κ‖2
Hα . ‖κ(0)‖2

Hα .

(6.8)

Finally, we compute h, first for the case h = supt≤T ‖θ(t)− θ(0)‖∗. For T we use the
smallest time for which (6.5) fails and temporarily also h ≤ 1. Then by assumption (5.7),
interpolation inequality (5.8) and the ‖κ‖2

H−α , ‖κ‖2
Hα bounds, with probability at least 1−

p0(m), we have

h = sup
t≤T

‖θ(t)− θ(0)‖∗ .
√

2

m

∫ T

0
‖κ(τ)‖H0 dτ

.

√
2

m

∫ T

0
‖κ(τ)‖

1
2
H−α‖κ(τ)‖

1
2
Hα dτ

.

√
2

m
‖κ(0)‖

1
2
H−α‖κ(0)‖

1
2
Hα

∫ T

0
e−ch

βγ
β−α τ

4 dτ

≤ c

√
1

m

‖κ(0)‖
1
2
H−α‖κ(0)‖

1
2
Hα

h
βγ

β−α

for some generic constant c > 0. Solving for h, we obtain

h
1+

βγ
β−α . ‖κ(0)‖

1
2
H−α‖κ(0)‖

1
2
Hα m−

1
2 ⇔ h .

[
‖κ(0)‖

1
2
H−α‖κ(0)‖

1
2
Hαm−

1
2

] β−α
β(1+γ)−α

.

Notice that by assumption m is sufficiently large so that the right-hand side is strictly

smaller than one and thus T is only constrained by (6.5). In case h = c
√

d/m there is
nothing to show and we obtain

h . max

{[
‖κ(0)‖

1
2
H−α‖κ(0)‖

1
2
Hαm−

1
2

] β−α
β(1+γ)−α

, c

√
d

m

}
.
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Finally, we extend the result beyond the largest time T for which (6.5) is satisfied and hence
(6.5) holds with equality. Since ‖κ‖2

H0 is defined by a gradient flow, it is monotonically
decreasing and thus for any time t > T, we have

‖κ(t)‖2
H−α ≤ ‖κ(T)‖2

H−α = ch
2 γα

β−α ‖κ(0)‖2
Hα = c

[
h

γβ
β−α‖κ(0)‖

β
α
Hα

] 2α
β

.

[
h

βγ
β−α ‖κ(0)‖

β
α
Hα + ‖κ(0)‖

β
α
H−α e−ch

βγ
β−α β

2α t

] 2α
β

so that the error bound (6.6) holds for all times up to an adjustment of the constants. This
implies the statement of the lemma with our choice of h and τ.

Technical supplements

Lemma 6.1. Assume a, b, c, d > 0, ρ ≥ 1/2 and that x, y satisfy the differential inequality

x′ ≤ −ax1+ρy−ρ + bx, x(0) = x0, (6.9)

y′ ≤ −cxρy1−ρ + d
√

xy, y(0) = y0. (6.10)

Then within any time interval [0, T] for which

x(t) ≥
(

d

c

) 2
2ρ−1

y0 (6.11)

with

A :=
b

a
y

ρ
0, B(t) :=

[
1− b

a

(
x0

y0

)−ρ
]

e−bρt,

we have
x(t) ≤ A

(
1− B(t)

)−1
, y(t) ≤ y0.

If B(t) ≥ 0, this can be further estimated by

x(t) ≤
(

A + x
ρ
0e−bρt

) 1
ρ , y(t) ≤ y0.

Proof. First, we show that y(t) ≤ y0 for all t ∈ T. To this end, note that condition (6.11)
states that we are above a critical point for the second ODE (6.10). Indeed, setting y′(t) = 0
and thus y(t) = y0 and solving the second ODE (with = instead of ≤) for x(t), we have

x(t) =

(
d

c

) 2
2ρ−1

y0.

To show that y(t) ≥ y0, let ǫ ≥ 0 and define

Tǫ = sup

{
t ≤ T

∣∣∣∣ x(t) ≥
(

d

c

) 2
2ρ−1

y0(1 + ǫ)

}
,

τǫ = inf {t ≤ Tǫ| y(t) ≥ y0(1 + ǫ)} ,
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where the definition of Tǫ resembles the definition of T up to a safety factor of 1+ ǫ and τǫ

is the smallest time when our hypothesis y(t) ≤ y0 fails up to a small margin. Assume
that τǫ < Tǫ. Since 2ρ− 1 ≥ 0 for all t < τǫ, we have

x(t)2ρ−1 ≥
(

d

c

)2

[y0(1 + ǫ)]2ρ−1 ≥
(

d

c

)2

y(t)2ρ−1,

which upon rearrangement is equivalent to

−cxρy1−ρ + d
√

xy ≤ 0,

so that the differential equation (6.10) yields y′(t) ≤ 0 and hence y(t) ≤ y0 for all t < τǫ.
On the other hand, for all t > τǫ we have y(t) > y0(1+ ǫ), which contradicts the continuity
of y. It follows that τǫ ≥ Tǫ and with limǫ→0 Tǫ = T, we obtain

y(t) ≤ y0, t < T.

Next, we show the bounds for x(t). For any fixed function y, the function x is bounded by
the solution z of the equality case

z′ = −az1+ρy−ρ + bz, z(0) = x0

of the first equation (6.9). This is a Bernoulli differential equation, with solution

x(t) ≤ z(t) =

[
e−bρt

(
aρ
∫ t

0
ebρτy(τ)−ρ dτ + x

−ρ
0

)]− 1
ρ

.

Since y(t) ≤ y0, in the relevant time interval this simplifies to

z(t)ρ ≤ ebρt

(
aρ
∫ t

0
ebρτy

−ρ
0 dτ + x

−ρ
0

)−1

= ebρt

(
a

b
(ebρt − 1)y

−ρ
0 + x

−ρ
0

)−1

=

(
a

b
y
−ρ
0 −

(
a

b
y
−ρ
0 − x

−ρ
0

)
e−bρt

)−1

=
b

a
y

ρ
0

︸︷︷︸
=:A

(
1−

(
1− b

a

(
x0

y0

)−ρ)
e−bρt

︸ ︷︷ ︸
=:B(t)

)−1

,

which shows the first bound for x(t). We can estimate this further by

z(t)ρ ≤ A

1− B(t)
=

A[1− B(t)]

1− B(t)
+

AB(t)

1− B(t)
= A +

A

1− B(t)
B(t).
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In case B(t) ≥ 0, the function A/(1 − B(t)) is monotonically decreasing and thus with

A/(1− B(0)) = x
ρ
0, we have

z(t)ρ ≤ A +
A

1− B(0)
B(t) = A + x

ρ
0B(t) ≤ A + x

ρ
0e−bρt,

which shows the second bound for x(t) in the lemma.

6.2 Proof of Lemma 5.3: NTK Hölder continuity

The proof is technical but elementary. We start with upper bounds and Hölder continuity
for simple objects, like hidden layers, and then compose these for derived objects with
results for the NTK at the end of the section.

Throughout this section, we use a bar ·̄ to denote a perturbation. In particular W̄ℓ is
a perturbed weight,

f̄ ℓ+1(x) = W̄ℓn
− 1

2
ℓ

σ
(

f̄ ℓ(x)
)
, f̄ 1(x) = W̄0x

is the neural network with perturbed weights and ¯̂Σ,
¯̇̂
Σ, Γ̄ and ¯̂Γ are the kernels of the

perturbed network. The bounds in this section depend on the operator norm of the weight

matrices. At initialization, they are bounded ‖Wℓ‖n−1/2
ℓ

. 1, with high probability, except

for the first layer ‖W0‖n−1/2
1 . 1, which is of shape n1 × d and not approximately square.

In order to avoid special cases in the formulas below, we define n0 := n1 as the number
required in the matrix bounds and not the number of columns as for all other nℓ. All

perturbations of the weights that we need are close ‖Wℓ − W̄ℓ‖n−1/2
ℓ

. 1 so that we may
assume

‖Wℓ‖n−
1
2

ℓ
. 1, (6.12)

‖W̄ℓ‖n−
1
2

ℓ
. 1. (6.13)

In addition, we consider bounded domains

‖x‖ . 1, ∀ x ∈ D. (6.14)

Lemma 6.2. Assume that ‖x‖ . 1.

1. Assume that σ satisfies the growth condition (5.3) and may be different in each layer. Assume
the weights are bounded (6.12). Then

‖ f ℓ(x)‖ . n
1
2
0

ℓ−1

∏
k=0

‖Wk‖n−
1
2

k .

2. Assume that σ satisfies the growth and Lipschitz conditions (5.3) and (5.4) and may be dif-
ferent in each layer. Assume the weights and perturbed weights are bounded (6.12), (6.13).
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Then

‖ f ℓ(x)− f̄ ℓ(x)‖ . n
1
2
0

ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

ℓ−1

∏
j=0
j 6=k

max
{
‖W j‖, ‖W̄ j‖

}
n
− 1

2
j .

3. Assume that σ has bounded derivative (5.5) and may be different in each layer. Assume the
weights are bounded (6.12). Then

‖ f ℓ(x)− f ℓ(x̄)‖ . n
1
2
0

[
ℓ−1

∏
k=0

‖Wk‖n−
1
2

k

]
‖x− x̄‖.

Proof. 1. For ℓ = 0, we have

‖ f 1(x)‖ = ‖W0x‖ ≤ n
1
2
0 ‖W0‖n−

1
2

0 ,

where in the last step we have used that ‖x‖ . 1. For ℓ > 0, we have

‖ f ℓ+1‖ =
∥∥∥Wℓn

− 1
2

ℓ
σ( f ℓ)

∥∥∥ ≤ ‖Wℓ‖n−
1
2

ℓ
‖σ( f ℓ)‖

(5.3)

. ‖Wℓ‖n−
1
2

ℓ
‖ f ℓ‖

induction

. ‖Wℓ‖n−
1
2

ℓ
n

1
2
0

ℓ−1

∏
k=0

‖Wk‖n−
1
2

k = n
1
2
0

ℓ

∏
k=0

‖Wk‖n−
1
2

k ,

where in the first step we have used the definition of f ℓ+1, in the third the growth
condition and in the fourth the induction hypothesis.

2. For ℓ = 0 we have

‖ f 1 − f̄ 1‖ =
∥∥[W0 − W̄0]x

∥∥ = n
1
2
0 ‖W0 − W̄0‖n−

1
2

0 ,

where in the last step we have used that ‖x‖ . 1. For ℓ > 0, we have

‖ f ℓ+1 − f̄ ℓ+1‖ =
∥∥∥Wℓn

− 1
2

ℓ
σ( f ℓ)− W̄ℓn

− 1
2

ℓ
σ( f̄ ℓ)

∥∥∥

≤ ‖Wℓ − W̄ℓ‖n−
1
2

ℓ
‖σ( f ℓ)‖

+ ‖W̄ℓ‖n−
1
2

ℓ
‖σ( f ℓ)− σ( f̄ ℓ)‖

=: I + I I.

For the first term, the growth condition (5.3) implies ‖σ( f ℓ)‖ . ‖ f ℓ‖ and thus the
first part of the lemma yields

I . ‖Wℓ − W̄ℓ‖n−
1
2

ℓ
n

1
2
0

ℓ−1

∏
k=0

‖Wk‖n−
1
2

k .
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For the second term, we have by Lipschitz continuity (5.4) and induction

I I = ‖W̄ℓ‖n−
1
2

ℓ
‖σ( f ℓ)− σ( f̄ ℓ)‖ . ‖W̄ℓ‖n−

1
2

ℓ
‖ f ℓ − f̄ ℓ‖

. n
1
2
0

ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

ℓ

∏
j=0
j 6=k

max
{
‖W j‖, ‖W j‖

}
n
− 1

2
j .

By I and I I we obtain

‖ f ℓ+1 − f̄ ℓ+1‖ . n
1
2
0

ℓ

∑
k=0

‖Wk − W̄k‖n−
1
2

k

ℓ

∏
j=0
j 6=k

max
{
‖W j‖, ‖W j‖

}
n
− 1

2
j ,

which shows the lemma.

3. Follows from the mean value theorem because by Lemma 6.3 below the first deriva-
tives are uniformly bounded.

Lemma 6.3. Assume that σ has bounded derivative (5.5) and may be different in each layer. As-
sume the weights are bounded (6.12). Then

‖D f ℓ(x)‖ . n
1
2
0

ℓ−1

∏
k=0

‖Wk‖n−
1
2

k .

Proof. For ℓ = 0, we have

‖D f 1(x)‖ = ‖W0Dx‖ ≤ n
1
2
0 ‖W0‖n−

1
2

0 ,

where in the last step we have used that ‖Dx‖ = ‖I‖ = 1. For ℓ > 0, we have

‖D f ℓ+1‖ =
∥∥Wℓn

− 1
2

ℓ
Dσ( f ℓ)

∥∥

=
∥∥Wℓn

− 1
2

ℓ

∥∥‖Dσ( f ℓ)‖ ≤ ‖Wℓ‖n−
1
2

ℓ
‖σ̇( f ℓ)⊙ D f ℓ‖

(5.5)

. ‖Wℓ‖n−
1
2

ℓ
‖D f ℓ‖

induction

. ‖Wℓ‖n−
1
2

ℓ
n

1
2
0

ℓ−1

∏
k=0

‖Wk‖n−
1
2

k

= n
1
2
0

ℓ

∏
k=0

‖Wk‖n−
1
2

k ,

where in the first step we have used the definition of f ℓ+1, in the fourth the boundedness
of σ̇ and in the fifth the induction hypothesis.

Remark 6.1. An argument analogous to Lemma 6.3 does not show that the derivative is

Lipschitz or similarly second derivatives ‖∂xi
∂xj f ℓ‖ are bounded. Indeed, the argument

uses that ∥∥∂xi
σ( f ℓ)

∥∥ =
∥∥σ̇( f ℓ)⊙ ∂xi

f ℓ
∥∥ ≤ ‖σ̇( f ℓ)‖∞

∥∥∂xi
f ℓ
∥∥,
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where we bound the first factor by the upper bound of σ̇ and the second by induction.
However, higher derivatives produce products

∥∥∂xi
∂xj

σ( f ℓ)
∥∥ =

∥∥σ̇( f ℓ)⊙ ∂xi
∂xi

f ℓ + σ(2)( f ℓ)⊙ ∂xi
f ℓ ⊙ ∂xj

f ℓ
∥∥

≤ ‖σ̇( f ℓ)‖∞

∥∥∂xi
∂xj

f ℓ
∥∥+ ‖σ(2)( f ℓ)‖∞

∥∥∂xi
f ℓ ⊙ ∂xj

f ℓ
∥∥

With bounded weights (6.12) the hidden layers are of size ‖∂xi
f ℓ‖ . n1/2

0 but a naive
estimate of their product by Cauchy-Schwarz and embedding

∥∥∂xi
f ℓ ⊙ ∂xj

f ℓ
∥∥ ≤

∥∥∂xi
f ℓ
∥∥
ℓ4

∥∥∂xi
f ℓ
∥∥
ℓ4
≤
∥∥∂xi

f ℓ
∥∥∥∥∂xi

f ℓ
∥∥ . n0

is much larger.

Given the difficulties in the last remark, we can still show that f ℓ is Hölder continuous
with respect to the weights in a Hölder norm with respect to x.

Lemma 6.4. Assume that σ satisfies the growth and Lipschitz conditions (5.3), (5.4) and may be
different in each layer. Assume the weights, perturbed weights and domain are bounded (6.12)-
(6.14). Then for 0 < α < 1,

‖σ( f ℓ)‖C0;α . n
1
2
0 , ‖σ( f̄ ℓ)‖C0;α . n

1
2
0 ,

‖σ( f ℓ)− σ( f̄ ℓ)‖C0;α . n
1
2
0

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

.

Proof. By the growth condition (5.3) and the Lipschitz continuity (5.4) of the activation
function, we have

‖σ( f ℓ)‖C0 . ‖ f ℓ‖C0 , ‖σ( f ℓ)‖C0;1 . ‖ f ℓ‖C0;1 .

Thus the interpolation inequality in Lemma 7.2 implies

‖σ( f ℓ)‖C0;α . ‖σ( f ℓ)‖1−α
C0 ‖σ( f ℓ)‖α

C0;1 . ‖ f ℓ‖1−α
C0 ‖ f ℓ‖α

C0;1 . n
1
2
0 ,

where in the last step we have used the bounds form Lemma 6.2 together with

‖Wℓ‖n−
1
2

ℓ
. 1, ‖W̄ℓ‖n−

1
2

ℓ
. 1

from assumptions (6.12), (6.13). Likewise, by the interpolation inequality in Lemma 7.2
we have

‖σ( f ℓ)− σ( f̄ ℓ)‖C0;α . ‖σ( f ℓ)− σ( f̄ ℓ)‖1−α
C0 ‖σ( f ℓ)− σ( f̄ ℓ)‖α

C0;1

. ‖σ( f ℓ)− σ( f̄ ℓ)‖1−α
C0 max

{
‖σ( f ℓ)‖α

C0;1‖σ( f̄ ℓ)‖α
C0;1

}
.

. ‖ f ℓ − f̄ ℓ‖1−α
C0 max

{
‖ f ℓ‖α

C0;1‖ f̄ ℓ‖α
C0;1

}
.

. n
1
2
0

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

,
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where in the third step we have used that σ is Lipschitz and in the last step the bounds

from Lemma 6.2 together with the bounds ‖Wℓ‖n−1/2
ℓ

. 1 and ‖W̄ℓ‖n−1/2
ℓ

. 1 from
assumptions (6.12), (6.13).

Lemma 6.5. Assume that σ satisfies the growth and Lipschitz conditions (5.3), (5.4) and may be
different in each layer. Assume the weights, perturbed weights and domain are bounded (6.12)-
(6.14). Then for 0 < α, β < 1,

‖Σ̂ℓ‖C0;α,β .
n0

nℓ

, ‖ ¯̂Σℓ‖C0;α,β .
n0

nℓ

,

‖Σ̂ℓ − ¯̂Σℓ‖C0;α,α .
n0

nℓ

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

.

Proof. Throughout the proof, we abbreviate

f ℓ = f ℓ(x), f̄ ℓ = f̄ ℓ(x), f̃ ℓ = f ℓ(y), ˜̄f ℓ = f̄ ℓ(x)

for two independent variables x and y. Then by definition (5.2) of Σ̂ℓ

‖Σ̂ℓ‖C0;α,β =
1

nℓ

‖σ( f ℓ)⊺σ( f̃ ℓ)‖C0;α,β ≤ 1

nℓ

‖σ( f ℓ)‖C0;α‖σ( f̃ ℓ)‖C0;β .
n0

nℓ

,

where in the second step we have used the product identity Item 3 in Lemma 7.2 and in

the last step Lemma 6.4. The bound for ‖ ¯̂Σℓ‖C0;α,β follows analogously. Likewise for α = β,

‖Σ̂ℓ − ¯̂Σℓ‖C0;α,α =
1

nℓ

∥∥σ( f ℓ)⊺σ( f̃ ℓ)− σ( f̄ ℓ)⊺σ( ˜̄f ℓ)
∥∥

C0;α,α

=
1

nℓ

∥∥[σ( f ℓ)− σ( f̄ ℓ)
]⊺

σ( f̃ ℓ)− σ( f̄ ℓ)⊺
[
σ( f̃ ℓ)− σ( ˜̄f ℓ)

]∥∥
C0;α,α

≤ 1

nℓ

∥∥[σ( f ℓ)− σ( f̄ ℓ)
]⊺

σ( f̃ ℓ)
∥∥

C0;α,α +
∥∥σ( f̄ ℓ)⊺

[
σ( f̃ ℓ)− σ( ˜̄f ℓ)

]∥∥
C0;α,α

=
2

nℓ

∥∥[σ( f ℓ)− σ( f̄ ℓ)
]⊺

σ( f̃ ℓ)
∥∥

C0;α,α ,

where in the last step we have used symmetry in x and y. Thus, by the product identity
Item 3 in Lemma 7.2, we obtain

‖Σ̂ℓ − ¯̂Σℓ‖C0;α,α ≤ 2

nℓ

‖σ( f ℓ)− σ( f̄ ℓ)‖C0;α‖σ( f̃ ℓ)‖C0;α

.
n0

nℓ

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

,

where in the last step we have used Lemma 6.4.
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Lemma 6.6 (Lemma 5.3 Restated form Overview). Assume that σ and σ̇ satisfy the growth and
Lipschitz conditions (5.3), (5.4) and may be different in each layer. Assume the weights, perturbed
weights and domain are bounded (5.13) and nL ∼ nL−1 ∼ · · · ∼ n1. Then for 0 < α < 1 and
n0 := n1,

‖Γ̂‖C0;α,α . 1, ‖ ¯̂Γ‖C0;α,α . 1,

‖Γ̂− ¯̂Γ‖C0;α,α .
n0

nL

[
L−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

.

Proof. By Lemma 6.5 and nℓ ∼ n0, we have

‖Σ̂ℓ‖C0;α,α , ‖ ¯̂Σℓ‖C0;α,α . 1, ‖Σ̂ℓ − ¯̂Σℓ‖C0;α,α .
n0

nℓ

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

.

Since σ̇ satisfies the same assumptions as σ, the same lemma provides

‖ ˆ̇Σℓ‖C0;α,α , ‖ ¯̇̂
Σℓ‖C0;α,α . 1, ‖ ˆ̇Σℓ − ¯̇̂

Σℓ‖C0;α,α .
n0

nℓ

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

.

Furthermore, by Lemma 5.1, we have

Γ̂(x, y) = ˆ̇ΣL(x, y)Σ̂L−1(x, y).

Thus, since Hölder spaces are closed under products, Lemma 7.2 Item 4, it follows that

‖Γ̂− ¯̂Γ‖C0;α,α =
∥∥ ˆ̇ΣL(x, y)Σ̂L−1(x, y)− ¯̇̂

ΣL(x, y) ¯̂ΣL−1(x, y)
∥∥

C0;α,α

≤
∥∥[ ˆ̇ΣL(x, y)− ¯̇̂

ΣL(x, y)
]
Σ̂L−1(x, y)

∥∥
C0;α,α

+
∥∥ ¯̇̂

ΣL(x, y)
[
Σ̂L−1(x, y)− ¯̂ΣL−1(x, y)

]∥∥
C0;α,α

≤
∥∥ ˆ̇ΣL(x, y)− ¯̇̂

ΣL(x, y)
∥∥

C0;α,α

∥∥Σ̂L−1(x, y)
∥∥

C0;α,α

+
∥∥ ¯̇̂

ΣL(x, y)
∥∥

C0;α,α

∥∥Σ̂L−1(x, y)− ¯̂ΣL−1(x, y)
∥∥

C0;α,α

.
n0

nℓ

[
ℓ−1

∑
k=0

‖Wk − W̄k‖n−
1
2

k

]1−α

,

where in the last step we have used Lemma 6.5 and nL ∼ nL−1.

6.3 Proof of Lemma 5.4: Concentration

Concentration for the NTK

Γ(x, y) := Σ̇L(x, y)ΣL−1(x, y)



J. Mach. Learn., 3(2):107-175 140

is derived from concentration for the forward kernels Σ̇L and ΣL−1. They are shown in-

ductively by splitting off the expectation Eℓ [·] with respect to the last layer Wℓ in

‖Σ̂ℓ+1 − Σℓ+1‖C0;α,β ≤
∥∥Σ̂ℓ+1 −Eℓ[Σ̂

ℓ+1]
∥∥

C0;α,β +
∥∥Eℓ[Σ̂

ℓ+1]− Σℓ+1
∥∥

C0;α,β .

Concentration for the first term is shown in Section 6.3.1 by a chaining argument and
bounds for the second term in Section 6.3.2 with an argument similar to [18]. The results
are combined into concentration for the NTK in Section 6.3.3.

6.3.1 Concentration of the last layer

We define
Λ̂ℓ

r(x, y) := σ
(

f ℓr (x)
)
σ
(

f ℓr (y)
)

as the random variables that constitute the kernel

Σ̂ℓ(x, y) =
1

nℓ

nℓ

∑
r=1

Λ̂ℓ
r(x, y) =

1

nℓ

nℓ

∑
r=1

σ
(

f ℓr (x)
)
σ
(

f ℓr (y)
)
.

For fixed weights W0, . . . , Wℓ−2 and random Wℓ−1, all Λ̂ℓ
r , r ∈ [nℓ] are random variables

dependent only on the random vector Wℓ−1
r· and thus independent. Hence, we can show

concentration uniform in x and y by chaining. For Dudley’s inequality, one would bound
the increments ∥∥Λ̂ℓ

r(x, y)− Λ̂ℓ
r(x̄, ȳ)

∥∥
ψ2

. ‖x− x̄‖α + ‖y− ȳ‖α,

where the right-hand side is a metric for α ≤ 1. However, this is not sufficient in our

case. First, due to the product in the definition of Λ̂ℓ
r , we can only bound the ψ1 norm

and second this leads to a concentration of the supremum norm ‖Λ̂ℓ
r‖C0 , whereas we need

a Hölder norm. Therefore, we bound the finite difference operators

∥∥∥∆α
x,hx

∆
β
y,hy

Λ̂ℓ
r(x, y)− ∆α

x,h̄x
∆

β

y,h̄y
Λ̂ℓ

r(x̄, ȳ)
∥∥∥

ψ1

. ‖x− x̄‖α + ‖hx − h̄x‖α + ‖y− ȳ‖β + ‖hy − h̄y‖β,

which can be conveniently expressed by the Orlicz space valued Hölder norm

∥∥∆α
x∆

β
y Λ̂ℓ

r

∥∥
C0;α,β(∆D×∆D;ψ1)

. 1

with the following notations:

1. Finite difference operators ∆α : (x, h) → h−α[ f (x + h)− f (x)], depending both on x
and h, with partial application two variables x and y denoted by ∆α

x and ∆α
y, respec-

tively. See Section 7.1.

2. Domain ∆D consisting of all pairs (x, h) for which x, x + h ∈ D, see (7.1). Likewise
the domain ∆D× ∆D consists of all feasible x, hx, y and hy.
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3. Following the definitions in Section 7.1, we use the Hölder space C0;α,β(∆D×∆D; Lψi
),

i = 1, 2 with values in the Orlicz spaces Lψi
of random variables for which the ‖ · ‖ψi

norms are finite. For convenience, we abbreviate this by C0;α,β(∆D× ∆D; ψi).

Given the above inequalities, we derive concentration by chaining for mixed tail random
variables in [16] summarized in Corollary 7.1.

Lemma 6.7. Assume for k = 0, . . . , ℓ− 2 the weights Wk are fixed and bounded ‖Wk‖n−1/2
k . 1.

Assume that Wℓ−1 is i.i.d. sub-Gaussian with ‖Wℓ−1
ij ‖ψ2

. 1. Let r ∈ [nℓ].

1. Assume that σ satisfies the growth condition (5.3) and may be different in each layer. Then

∥∥σ
(

f ℓr (x)
)∥∥

ψ2
.

(
n0

nℓ−1

) 1
2

.

2. Assume that σ has bounded derivative (5.5) and may be different in each layer. Then

∥∥σ
(

f ℓr (x)
)
− σ

(
f ℓr (x̄)

)∥∥
ψ2

.

(
n0

nℓ−1

) 1
2

‖x− x̄‖.

Proof. 1. Since for frozen W0, . . . , Wℓ−2,

Wℓ−1
r· n

− 1
2

ℓ−1σ( f ℓ−1) =
nℓ−1

∑
s=1

Wℓ−1
rs n

− 1
2

ℓ−1σ
(

f ℓ−1
s

)

is a sum of independent random variables Wℓ−1
rs n−1/2

ℓ−1 σ( f ℓ−1
s ), s ∈ [nℓ−1], by Ho-

effding’s inequality (general version for sub-Gaussian norms, see e.g. [67, Proposi-
tion 2.6.1]) we have

∥∥Wℓ−1
r· n

− 1
2

ℓ−1σ( f ℓ−1)
∥∥

ψ2
. n

− 1
2

ℓ−1‖σ( f ℓ−1)‖.

Thus
∥∥σ
(

f ℓr
)∥∥

ψ2
.
∥∥ f ℓr
∥∥

ψ2
=
∥∥Wℓ−1

r· n
− 1

2
ℓ−1σ( f ℓ−1)

∥∥
ψ2

≤ n
− 1

2
ℓ−1‖σ( f ℓ−1)‖ ≤ n

− 1
2

ℓ−1‖ f ℓ−1‖ .
(

n0

nℓ−1

) 1
2

,

where in the first step we have used the growth condition and Lemma 7.5, in the
fourth step the growth condition and in the last step the upper bounds from Lem-
ma 6.2. The initial case ℓ = 1 follows analogously.

2. Using Hoeffding’s inequality analogous to the previous item, we have
∥∥∥Wℓ−1

r· n
− 1

2
ℓ−1

[
σ
(

f ℓ−1(x)
)
− σ

(
f ℓ−1(x̄)

)]∥∥∥
ψ2

. n
− 1

2
ℓ−1

∥∥σ
(

f ℓ−1(x)
)
− σ

(
f ℓ−1(x̄)

)∥∥,
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and
∥∥σ
(

f ℓr (x)
)
− σ

(
f ℓr (x̄)

)∥∥
ψ2

.
∥∥ f ℓr (x)− f ℓr (x̄)

∥∥
ψ2

=
∥∥∥Wℓ−1

r· n
− 1

2
ℓ−1

[
σ
(

f ℓ−1(x)
)
− σ

(
f ℓ−1(x̄)

)]∥∥∥
ψ2

. n
− 1

2
ℓ−1

∥∥σ
(

f ℓ−1(x)
)
− σ

(
f ℓ−1(x̄)

)∥∥

. n
− 1

2
ℓ−1

∥∥ f ℓ−1(x)− f ℓ−1(x̄)
∥∥

.

(
n0

nℓ−1

) 1
2

‖x− x̄‖,

where in the first step we have used the Lipschitz condition and Lemma 7.5, in the
fourth step the Lipschitz condition and in the last step the Lipschitz bounds from
Lemma 6.2. The initial case ℓ = 1 follows analogously.

Lemma 6.8. Let U and V be two normed spaces and D ⊂ U. For all 0 ≤ α ≤ 1/2, we have

‖∆α f‖C0;α(∆D;V) ≤ 4‖ f‖C0;2α(D;V)

with ∆D defined in (7.1).

Proof. Throughout the proof, let C0;2α = C0;2α(D; V) and | · | = ‖ · ‖U or | · | = ‖ · ‖V

depending on context. Unraveling the definitions, for every (x, h), (x̄, h̄) ∈ ∆D, we have
to show ∣∣∆α

h f (x)− ∆α
h̄

f (x̄)
∣∣ ≤ 4‖ f‖C0;2α max{|x− x̄|, |h− h̄|}α.

We consider two cases. First, assume that |h| ≤ max{|x − x̄|, |h − h̄|} and h̄ is arbitrary.
Then |h̄| ≤ |h̄− h|+ |h| ≤ 2 max{|x− x̄|, |h− h̄|} and thus

∣∣∆α
h f (x)− ∆α

h̄
f (x̄)

∣∣ ≤
∣∣∆α

h f (x)
∣∣+

∣∣∆α
h̄

f (x̄)
∣∣

≤ ‖ f‖C0;2α |h|α + ‖ f‖C0;2α |h̄|α
≤ 3‖ f‖C0;2α max{|x− x̄|, |h− h̄|}α.

In the second case, assume that max{|x− x̄|, |h − h̄|} ≤ |h| and without loss of generality
that |h| ≤ |h̄|. Then

∣∣∆α
h f (x)− ∆α

h̄
f (x̄)

∣∣ ≤
∣∣[ f (x + h)− f (x)]|h|−α − [ f (x̄ + h̄)− f (x̄)]|h̄|−α

∣∣
≤ | f (x + h)− f (x)− f (x̄ + h̄) + f (x̄)| |h|−α

+ | f (x̄ + h̄)− f (x̄)|
∣∣|h|−α − |h̄|−α

∣∣
=: I + I I.

For the first term, we have

I ≤ | f (x + h)− f (x)− f (x̄ + h̄) + f (x̄)| |h|−α
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≤ ‖ f‖C0;2α

[
|x + h− x̄− h̄|2α + |x− x̄|2α

]
|h|−α

≤ 3‖ f‖C0;2α max
{
|x− x̄|2α, |h− h̄|2α

}
|h|−α

≤ 3‖ f‖C0;2α max
{
|x− x̄|, |h− h̄|

}α
.

For the second term, since α ≤ 1, we have

I I ≤ ‖ f‖C0;2α |h̄|2α
∣∣|h|−α − |h̄|−α

∣∣
≤ ‖ f‖C0;2α |h|α |h̄|α

∣∣|h|−α − |h̄|−α
∣∣

≤ ‖ f‖C0;2α

∣∣|h̄|α − |h|α
∣∣

≤ ‖ f‖C0;2α |h̄− h|α.

Combining all inequalities shows the result.

Lemma 6.9. Assume for k = 0, . . . , ℓ− 2 the weights Wk are fixed and bounded ‖Wk‖n−1/2
k . 1.

Assume that Wℓ−1 is i.i.d. sub-Gaussian with ‖Wℓ−1
ij ‖ψ2

. 1. Assume that σ satisfies the growth

condition (5.3), has bounded derivative (5.5) and may be different in each layer. Let r ∈ [nℓ]. Then
for α, β ≤ 1/2, ∥∥∆α

x∆
β
y Λ̂ℓ

r

∥∥
C0;α,β(∆D×∆D;ψ1)

.
n0

nℓ−1

with ∆D defined in (7.1).

Proof. Throughout the proof, we abbreviate

f ℓ = f ℓ(x), C0;α(ψi) = C0;α(∆D, ψi), i = 1, 2,

f̃ ℓ = f ℓ(y), C0;α,β(ψi) = C0;α,β(∆D× ∆D, ψi).

Since by Lemma 7.6 we have ‖XY‖ψ1
≤ ‖X‖ψ2

‖Y‖ψ2
by the product inequality Lemma 7.2

Item 3 for Hölder norms we obtain
∥∥∆α

x∆
β
y Λ̂ℓ

r

∥∥
C0;α,β(ψ1)

=
∥∥∆α

xσ
(

f ℓr
)
∆

β
y σ
(

f̃ ℓr
)∥∥

C0;α,β(ψ1)

.
∥∥∆α

xσ
(

f ℓr
)∥∥

C0;α(ψ2)

∥∥∆
β
y σ
(

f̃ ℓr
)∥∥

C0;β(ψ2)
.

Next, we use Lemma 6.8 to eliminate the finite difference in favour of a higher Hölder
norm ∥∥∆α

x∆
β
y Λ̂ℓ

r

∥∥
C0;α,β(ψ1)

.
∥∥σ
(

f ℓr
)∥∥

C0;2α(ψ2)

∥∥σ
(

f̃ ℓr
)∥∥

C0;2β(ψ2)
.

Finally, Lemma 6.7 implies that

∥∥σ
(

f ℓr
)∥∥

C0;2α(D;ψ2)
≤ n

1
2
0 n
− 1

2
ℓ−1,

and likewise for f̃ ℓr and thus

∥∥∆α
x∆

β
y Λ̂ℓ

r

∥∥
C0;α,β(ψ1)

.
n0

nℓ−1
.

The proof is complete.
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Lemma 6.10. Assume for k=0, . . . , ℓ− 2 the weights Wk are fixed and bounded ‖Wk‖n−1/2
k .1.

Assume that Wℓ−1 is i.i.d. sub-Gaussian with ‖Wℓ−1
ij ‖ψ2

. 1. Assume that the domain D

is bounded, that σ satisfies the growth condition (5.3), has bounded derivative (5.5) and may be
different in each layer. Then for α = β = 1/2,

Pr

[
∥∥Σ̂ℓ −E[Σ̂ℓ]

∥∥
C0;α,β(D)

≥ C
n0

nℓ−1

[√
d +
√

u√
nℓ−1

+
d + u

nℓ−1

]]
≤ e−u.

Proof. Since ∆α
x∆

β
y Λ̂ℓ

r for r ∈ [nℓ] only depends on the random vector Wℓ−1
r· , all stochastic

processes (∆α
x,hx

∆
β
y,hy

Λ̂ℓ
r(x, y))(x,hx,y,hy)∈∆D×∆D are independent and satisfy

∥∥∆α
x∆

β
y Λ̂ℓ

r

∥∥
C0;α,β(∆D×∆D;ψ1)

.
n0

nℓ−1

by Lemma 6.9. Thus, we can estimate the processes’ supremum by the chaining Corol-
lary 7.1

Pr

[
sup

(x,hx)∈∆D
(y,hy)∈∆D

∥∥∥∥∥
1

nℓ−1

nℓ−1

∑
r=1

∆α
x∆

β
y Λ̂ℓ

r −E

[
∆α

x∆
β
y Λ̂ℓ

r

] ∥∥∥∥∥ ≥ Cτ

]
≤ e−u

with

τ =
n0

nℓ−1

[(
d

nℓ−1

) 1
2

+
d

nℓ−1
+

(
u

nℓ−1

) 1
2

+
u

nℓ−1

]
.

Noting that

sup
(x,hx)∈∆D
(y,hy)∈∆D

∣∣∆α
x∆

β
y ·

∣∣ = ‖ · ‖C0;α,β(D),

and
1

nℓ−1

nℓ−1

∑
r=1

∆α
x∆

β
y Λ̂ℓ

r = ∆α
x∆

β
y

1

nℓ−1

nℓ−1

∑
r=1

Λ̂ℓ
r = ∆α

x∆
β
y Σ̂ℓ

completes the proof.

6.3.2 Perturbation of covariances

This section contains the tools to estimate
∥∥Eℓ[Σ̂

ℓ+1]− Σℓ+1
∥∥

C0;α,β

with an argument analogous to [18], except that we measure differences in Hölder norms.

As we will see in the next section, both Eℓ[Σ̂
ℓ+1] and Σℓ+1 are of the form

E(u,v)∼N (0,A) [σ(u)σ(v)]
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with two different matrices A and Â and thus it suffices to show that the above expectation
is Hölder continuous in A. By a variable transform

A =

[
a11 a12

a21 a22

]
=

[
a2 ρab

ρab b2

]

and rescaling, we reduce the problem to matrices of the form

A =

[
1 ρ
ρ 1

]
.

For these matrices, by Mehler’s theorem we decompose the expectation as

E(u,v)∼N (0,A) [σ(u)σ(v)] =
∞

∑
k=0

〈σ, Hk〉N 〈σ, Hk〉N
ρk

k!
,

where Hk are Hermite polynomials. The rescaling introduces rescaled activation func-
tions, which we denote by

σa(x) := σ(ax). (6.15)

Finally, we show Hölder continuity by bounding derivatives. To this end, we use the

multi-index γ to denote derivatives ∂γ = ∂
γa
a ∂

γb
b ∂

γρ
ρ with respect to the transformed vari-

ables. Details are as follows.

Lemma 6.11. Let

A =

[
a2 ρab

ρab b2

]
=

[
a

b

] [
1 ρ
ρ 1

] [
a

b

]
.

Then

E(u,v)∼N (0,A) [σ(u)σ(v)] =
∞

∑
k=0

〈σa, Hk〉N 〈σb, Hk〉N
ρk

k!
.

Proof. By rescaling, or more generally, linear transformation of Gaussian random vari-
ables, we have

E(u,v)∼N (0,A) [σ(u)σ(v)] =
∫

σ(u)σ(v)dN

(
0,

[
a

b

] [
1 ρ
ρ 1

] [
a

b

])
(u, v)

=
∫

σ(au)σ(bv)dN

(
0,

[
1 ρ
ρ 1

])
(u, v).

Thus, by Mehler’s theorem (Theorem 7.2 in Section 7) we conclude that

E(u,v)∼N (0,A) [σ(u)σ(v)] =
∫∫

σ(au)σ(bv)
∞

∑
k=0

Hk(u)Hk(v)
ρk

k!
dN (0, 1)(u) dN (0, 1)(v)

=
∞

∑
k=0

〈σa, Hk〉N 〈σb, Hk〉N
ρk

k!
.

The proof is complete.
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Lemma 6.12. Assume

A =

[
a2 ρab

ρab b2

]

is positive semi-definite and all derivatives up to σ(γa+γρ) and σ
(γb+γρ)
b are continuous and have

at most polynomial growth for x→ ±∞. Then

∂γ
E(u,v)∼N (0,A) [σ(u)σ(v)] ≤

∥∥∂γa+γρ(σa)
∥∥

N

∥∥∂γb+γρ(σb)
∥∥

N
.

Proof. By Lemma 6.11, we have

∂γ
E(u,v)∼N (0,A) [σ(u)σ(v)] = ∂γ

∞

∑
k=0

〈σa, Hk〉N 〈σb, Hk〉N
ρk

k!

=
∞

∑
k=0

∂γa 〈σa, Hk〉N ∂γb 〈σb, Hk〉N ∂γρ
ρk

k!
. (6.16)

We first estimate the ρ derivative. Since 0 � A and a, b > 0, we must have

0 �
[

1 ρ
ρ 1

]
,

and thus

det

[
1 ρ
ρ 1

]
= 1− ρ2 ≥ 0.

It follows that |ρ| ≤ 1. Therefore,

∣∣∣∣∂γρ
ρk

k!

∣∣∣∣ =
∣∣∣∣

1

k!

k!

(k− γρ)!
ρk−γρ

∣∣∣∣ ≤
1

(k− γρ)!
. (6.17)

We eliminate the denominator (k−γρ)! by introducing extra derivatives into ∂γa〈σa, Hk〉N .
For this, by Lemma 7.8, we decrease the degree of the Hermite polynomial for a higher
derivative on σa

∂γa 〈σa, Hk〉N =
〈
∂γa(σa), Hk

〉
N
=
〈

∂γa+γρ(σa), Hk−γρ

〉
N

.

By Lemma 7.8, ‖ · ‖N normalized Hermite polynomials are given by

H̄k :=
1√
k!

Hk,

and thus

∂γa 〈σa, Hk〉N =
〈
∂γa+γρ(σa), H̄k−γρ

〉
N

√
(k− γρ)! .

Plugging the last equation and (6.17) into (6.16), we obtain

∂γ
E(u,v)∼N (0,A) [σ(u)σ(v)]
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≤
∞

∑
k=0

∣∣〈∂γa+γρ(σa), H̄k

〉
N

∣∣ ∣∣〈∂γb+γρ(σb), H̄k

〉
N

∣∣

≤
(

∞

∑
k=0

〈
∂γa+γρ(σa), H̄k

〉2

N

) 1
2
(

∞

∑
k=0

〈
∂γb+γρ(σb), H̄k

〉2

N

) 1
2

,

=
∥∥∂γa+γρ(σa)

∥∥
N

∥∥∂γb+γρ(σb)
∥∥

N ,

where in the second step we have used Cauchy-Schwarz and in the last that H̄k are an or-
thonormal basis.

Lemma 6.13. Let f (a11, a22, a12) be implicitly defined by solving the identity

[
a11 a12

a12 a22

]
=

[
a ρab

ρab b

]

for a, b and ρ. Let D f be a domain with a11, a22 ≥ c > 0 and |a12| . 1. Then

‖ f ′′′‖C1(D f )
. 1.

Proof. Comparing coefficients, f is explicitly given by

f (a11, a22, a12) =

[
a11 a22

a12

a11a22

]⊺
.

Since the denominator is bounded away from zero, all third partial derivatives exist and
are bounded.

Lemma 6.14. For D ⊂ Rd and x, y ∈ D, let

A(x, y) =

[
a11(x, y) a12(x, y)
a12(x, y) a22(x, y)

]
, B(x, y) =

[
b11(x, y) b12(x, y)
b12(x, y) b22(x, y)

]

with

a11(x, y) ≥ c > 0, a22(x, y) ≥ c > 0, |a12(x, y)| . 1,

b11(x, y) ≥ c > 0, b22(x, y) ≥ c > 0, |b12(x, y)| . 1.

Assume the derivatives σ(i), i = 0, . . . , 3, are continuous and have at most polynomial growth for
x → ±∞ and for all a ∈ {a(x, y) : x, y ∈ D, a ∈ {a11, a22, b11, b22}} the scaled activation
satisfies ∥∥∂i(σa)

∥∥
N
. 1, i = 1, . . . , 3

with σa defined in (6.15). Then, for α, β ≤ 1 the functions

x → E(u,v)∼N (0,A(x,y)) [σ(u)σ(v)] ,

x → E(u,v)∼N (0,B(x,y)) [σ(u)σ(v)]
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satisfy
∥∥E(u,v)∼N (0,A) [σ(u)σ(v)] −E(u,v)∼N (0,B) [σ(u)σ(v)]

∥∥
C0;α,β(D)

. ‖A‖C0;α,β(D)‖B‖C0;α,β(D)‖A− B‖C0;α,β(D).

Proof. Define F(a, b, ρ) = E(u,v)∼N (0,Ā) [σ(u)σ(v)] .

Ā =

[
a ρab

ρab b

]

and f (a11, a22, a12) by solving the identity

[
a11 a12

a12 a22

]
=

[
a ρab

ρab b

]

for a, b and ρ. Then

F ◦ f ◦ A = x, y → E(u,v)∼N (0,A(x,y)) [σ(u)σ(v)] ,

F ◦ f ◦ B = x, y → E(u,v)∼N (0,B(x,y)) [σ(u)σ(v)] ,

and
∥∥E(u,v)∼N (0,A) [σ(u)σ(v)] −E(u,v)∼N (0,B) [σ(u)σ(v)]

∥∥
C0;α,β(D)

= ‖F ◦ f ◦ A− F ◦ f ◦ B‖C0;α,β(D).

By Lemmas 7.3 (for ∆α and ∆β) and 7.4 (for ∆α∆β), we have

‖F ◦ f ◦ A− F ◦ f ◦ B‖C0;α,β(D)

. ‖F ◦ f‖C3(D f )
‖A− B‖C0;α,β(D) max

{
1, ‖A‖C0;α,β(D)

}
max

{
1, ‖B‖C0;α,β(D)

}

with D f = A(D) ∪ B(D), so that it suffices to bound ‖F ◦ f‖C3(D f )
. 1. This follows

directly from the assumptions, chain rule, product rule and Lemmas 6.12 and 6.13. Finally,
we simplify

max
{

1, ‖A‖C0;α,β(D)

}
≤ 1

c
‖A‖C0;α,β(D),

because
1

c
‖A‖C0;α,β(D) ≥

1

c
a11(·) ≥ 1

and likewise for B.

6.3.3 Concentration of the NTK

We combine the results from the last two sections to show concentration inequalities, first

for the forward kernels Σℓ and Σ̇ℓ and then for the NTK Γ.
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Lemma 6.15. Let α = β = 1/2 and k = 0, . . . , ℓ.

1. Assume that all Wk are i.i.d. standard normal.

2. Assume that σ satisfies the growth condition (5.3), has uniformly bounded derivative (5.5),

derivatives σ(i), i=0, . . . , 3, are continuous and have at most polynomial growth for x→±∞

and the scaled activations satisfy

∥∥∂i(σa)
∥∥

N
. 1, a ∈ {Σk(x, x) : x ∈ D}, i = 1, . . . , 3

with σa defined in (6.15). The activation function may be different in each layer.

3. For all x ∈ D assume
Σk(x, x) ≥ cΣ > 0.

4. The widths satisfy nℓ & n0 for all ℓ = 0, . . . , L.

Then, with probability at least

1− c
ℓ−1

∑
k=1

e−nk + e−uk ,

we have

‖Σℓ‖C0;α,β . 1, ‖Σ̂ℓ‖C0;α,β . 1,

‖Σ̂ℓ − Σℓ‖C0;α,β .
ℓ−1

∑
k=0

n0

nk

[√
d +
√

uk√
nk

+
d + uk

nk

]
≤ 1

2
cΣ

for all u1, . . . , uℓ−1 ≥ 0 sufficiently small so that the last inequality holds.

Proof. We prove the statement by induction. Let us first consider ℓ ≥ 1. We split off the
expectation over the last layer

‖Σ̂ℓ+1 − Σℓ+1‖C0;α,β ≤
∥∥Σ̂ℓ+1 −Eℓ[Σ̂

ℓ+1]
∥∥

C0;α,β +
∥∥Eℓ[Σ̂

ℓ+1]− Σℓ+1
∥∥

C0;α,β = I + I I,

where Eℓ[·] denotes the expectation with respect to Wℓ. We estimate I, given that the
lower layers satisfy

‖Wk‖n−
1
2

k . 1, k = 0, . . . , ℓ− 1, (6.18)

which is true with probability at least 1 − 2e−nk , see e.g. [67, Theorem 4.4.5]. Then, by
Lemma 6.10 for uℓ ≥ 0,

Pr

[
∥∥Σ̂ℓ+1 −E[Σ̂ℓ+1]

∥∥
C0;α,β(D)

≥ C
n0

nℓ

[√
d +
√

uℓ√
nℓ

+
d + uℓ

nℓ

]]
≤ e−uℓ . (6.19)

Next we estimate I I. To this end, recall that Σ̂ℓ+1(x, y) is defined by

Σ̂ℓ+1(x, y) =
1

nℓ

nℓ+1

∑
r=1

σ
(

f ℓ+1
r (x)

)
σ
(

f ℓ+1
r (y)

)
.
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For fixed lower layers W0, . . . , Wℓ−1, the inner arguments

f ℓ+1
r (x) = Wℓ

r·n
− 1

2
ℓ

σ
(

f ℓ(x)
)
, f ℓ+1

r (x) = Wℓ
r·n
− 1

2
ℓ

σ
(

f ℓ(y)
)

are Gaussian random variables in Wℓ
r· with covariance

El

[
Wℓ

r·n
− 1

2
ℓ

σ
(

f ℓ(x)
)⊺

Wℓ
r·n
− 1

2
ℓ

σ
(

f ℓ(y)
)]

=
1

nℓ

nℓ

∑
r=1

n
− 1

2
ℓ

σ
(

f ℓ(x)
)
n
− 1

2
ℓ

σ
(

f ℓ(y)
)
= Σ̂ℓ(x, y). (6.20)

It follows that

Eℓ[Σ̂
ℓ+1(x, y)] = E(u,v)∼N (0,Â) [σ(u)σ(v)] , Â =

[
Σ̂ℓ(x, x) Σ̂ℓ(x, y)
Σ̂ℓ(y, x) Σ̂ℓ(y, y)

]
.

This matches the definition

Σℓ+1(x, y) = Eu,v∼N (0,A) [σ (u) , σ (v)] , A =

[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]

of the process Σℓ+1 up to the covariance matrix Â versus A. Thus, we can estimate the dif-

ference ‖Eℓ[Σ̂
ℓ+1(x, y)]−Σℓ+1‖C0;α,β by Lemma 6.14 if the entries of A and Â satisfy the re-

quired bounds. To this end, we first bound the diagonal entries away from zero. For A, this

is true by assumption. For Â, by induction, with probability at least 1−c ∑
ℓ−1
k=1 e−nk+e−uk

we have

‖Σ̂ℓ − Σℓ‖C0;α,β .
ℓ−1

∑
k=0

n0

nk

[√
d +
√

uk√
nk

+
d + uk

nk

]
≤ 1

2
cΣ. (6.21)

In the event that this is true, we have

Σ̂ℓ(x, x) ≥ 1

2
cΣ > 0.

Next, we bound the off diagonal terms. Since the weights are bounded (6.18), Lemma 6.5
implies

‖Σ̂ℓ‖C0;α,β .
n0

nl
. 1, ‖Σℓ‖C0;α,β . 1,

where the last inequality follows from (6.21). In particular,

Σ̂ℓ(x, y) . 1, Σℓ(x, y) . 1

for all x, y ∈ D. Hence, we can apply Lemma 6.14 and obtain

‖Eℓ[Σ̂
ℓ+1]− Σℓ+1‖C0;α,β . ‖Σℓ‖C0;α,β‖Σ̂ℓ‖C0;α,β‖Σ̂ℓ − Σℓ‖C0;α,β

. ‖Σ̂ℓ − Σℓ‖C0;α,β .
ℓ−1

∑
k=0

n0

nk

[√
d +
√

uk√
nk

+
d + uk

nk

]
,
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where the last line follows by induction. Together with (6.18), (6.19) and a union bound,
this shows the result for ℓ ≥ 1.

Finally, we consider the induction start for ℓ = 0. The proof is the same, except that in
(6.20) the covariance simplifies to

El

[
f 1
r (x) f 1

r (y)
]
= El

[(
W0

r·x
)(

W0
r·y
)]

= x⊺y = Σ0(x, y).

Hence, for ℓ = 1 the two covariances A and Â are identical and therefore
∥∥E0[Σ̂

1(x, y)]− Σ1
∥∥

C0;α,β = 0.

The proof is complete.

Lemma 6.16 (Lemma 5.4, Restated from the Overview). Let α=β=1/2 and k=0, . . . , L−1.

1. Assume that WL ∈ {−1,+1} with probability 1/2 each.

2. Assume that all Wk are are i.i.d. standard normal.

3. Assume that σ and σ̇ satisfy the growth condition (5.3), have uniformly bounded derivatives

(5.5), derivatives σ(i), i = 0, . . . , 3, are continuous and have at most polynomial growth for
x→ ±∞ and the scaled activations satisfy

∥∥∂i(σa)
∥∥

N
. 1,

∥∥∂i(σ̇a)
∥∥

N
. 1, a ∈ {Σk(x, x) : x ∈ D}, i = 1, . . . , 3

with σa(x) := σ(ax). The activation functions may be different in each layer.

4. For all x ∈ D assume
Σk(x, x) ≥ cΣ > 0.

5. The widths satisfy nℓ & n1 =: n0 for all ℓ = 0, . . . , L.

Then, with probability at least

1− c
L−1

∑
k=1

e−nk + e−uk , (6.22)

we have

‖Γ̂− Γ‖C0;α,β .
L−1

∑
k=0

n0

nk

[√
d +
√

uk√
nk

+
d + uk

nk

]
≤ 1

2
cΣ

for all u1, . . . , uL−1 ≥ 0 sufficiently small so that the rightmost inequality holds.

Proof. By definition (5.1) of Γ and Lemma 5.1 for Γ̂, we have

Γ(x, y) = Σ̇L(x, y)ΣL−1(x, y), Γ̂(x, y) = ˆ̇ΣL(x, y)Σ̂L−1(x, y),

and therefore

‖Γ− Γ̂‖C0;α,β =
∥∥Σ̇LΣL−1 − ˆ̇ΣLΣ̂L−1

∥∥
C0;α,β

=
∥∥[Σ̇L − ˆ̇ΣL

]
ΣL−1

∥∥
C0;α,β +

∥∥ ˆ̇ΣL
[
ΣL−1 − Σ̂L−1

]∥∥
C0;α,β

=
∥∥Σ̇L − ˆ̇ΣL

∥∥
C0;α,β

∥∥ΣL−1
∥∥

C0;α,β +
∥∥ ˆ̇ΣL

∥∥
C0;α,β

∥∥ΣL−1 − Σ̂L−1
∥∥

C0;α,β ,
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where in the last step we have used Lemma 7.2 Item 4. Thus, the result follows from

‖ΣL−1‖C0;α,β . 1, ‖Σ̂L−1‖C0;α,β . 1,

‖Σ̇L‖C0;α,β . 1, ‖ ˆ̇ΣL‖C0;α,β . 1,

and

max
{
‖ΣL−1 − Σ̂L−1‖C0;α,β , ‖Σ̇L − ˆ̇ΣL‖C0;α,β

}

.
L−1

∑
k=0

n0

nk

[√
d +
√

uk√
nk

+
d + uk

nk

]
≤ 1

2
cΣ

with probability (6.22) by Lemma 6.15. For Σ̇L, we do not require the lower bound Σ̇k(x, x)
≥ cΣ > 0 because in the recursive definition σ̇ is only used in the last layer and therefore
not necessary in the induction step in the proof of Lemma 6.15.

6.4 Proof of Lemma 5.5: Weights stay close to initial

The derivative ∂Wk f ℓ(x) ∈ Rnℓ−1×(nk+1×nk) is a tensor with three axes for which we define
the norm ∥∥∂Wk f ℓ(x)

∥∥
∗ := sup

‖u‖,‖v‖,‖w‖≤1
∑
r,i,j

urviwj∂Wk
ij

f ℓr (x),

and the corresponding maximum norm ‖ · ‖C0(D;∗) for functions mapping x to a tensor

measured in the ‖ · ‖∗ norm. We use this norm for an inductive argument in a proof, but
later only apply it for the last layer ℓ = L + 1. In this case nL+1 = 1 and the norm reduces
to a regular matrix norm.

Lemma 6.17. Assume that σ satisfies the growth and derivative bounds (5.3), (5.5) and may be

different in each layer. Assume the weights are bounded ‖Wk‖n−1/2
k . 1, k = 1, . . . , ℓ− 1. Then

for 0 ≤ α ≤ 1,

∥∥∂Wk f ℓ
∥∥

C0(D;∗) .
(

n0

nk

) 1
2

.

Proof. First note that for any tensor T
∥∥∥∥∑

r,i,j

urviwjTrij

∥∥∥∥
C0

≤ C‖u‖‖v‖‖w‖

implies that ‖T‖C0(D;∗) ≤ C, which we use throughout the proof. We proceed by induction

over ℓ. For k ≥ ℓ, the pre-activation f ℓ does not depend on Wk and thus ∂Wk f ℓ(x) = 0.
For k = ℓ− 1, we have

∂Wk
ij

f k+1
r (x) = ∂Wk

ij
Wk

r·n
− 1

2
k σ

(
f k(x)

)
= δirn

− 1
2

k σ
(

f k
j (x)

)
,

and therefore for any vectors u, v, w,
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∥∥∥∥∑
r,i,j

urviwj∂Wk
ij

f k
r (x)

∥∥∥∥
C0

=
∥∥n
− 1

2
k (u⊺v)

(
w⊺σ( f k)

)∥∥
C0

≤ n
− 1

2
k ‖u‖‖v‖‖w‖‖σ( f k)‖C0 . ‖u‖‖v‖‖w‖

(
n0

nk

) 1
2

,

where in the last step we have used Lemma 6.4. Thus, we conclude that

∥∥∂Wk f k+1(x)
∥∥

C0(D;∗) .
(

n0

nk

) 1
2

.

For k < ℓ− 1, we have

∂Wk
ij

f ℓ(x) = ∂Wk
ij
Wℓ−1n

− 1
2

ℓ−1σ( f ℓ−1) = Wℓ−1n
− 1

2
ℓ−1

[
σ̇( f ℓ−1)⊙ ∂Wk

ij
f ℓ−1

]
,

and therefore
∥∥∥∥∑

r,i,j

urviwj∂Wℓ
ij

f k
r

∥∥∥∥
C0

≤
∥∥u⊺Wℓ−1n

− 1
2

ℓ−1

∥∥‖v‖‖w‖
∥∥σ̇( f ℓ−1)⊙ ∂Wk

ij
f ℓ−1

∥∥
C0(D;∗)

≤ ‖u‖‖v‖‖w‖‖σ̇( f ℓ−1)‖C0(D;ℓ∞)

∥∥∂Wk
ij

f ℓ−1
∥∥

C0(D;∗)

. ‖u‖‖v‖‖w‖
(

n0

nk

) 1
2

,

where in the second step we have used that ‖Wℓ−1‖n−1/2
ℓ−1 . 1 and in the last step we have

used that ‖σ̇( f ℓ−1)‖ℓ∞
. 1 because |σ̇(·)| . 1 and the induction hypothesis.

For the induction start, with ‖x‖ . 1, we have

∥∥∥∥∑
r,i,j

urviwj∂W0
ij

f 1
r (x)

∥∥∥∥
C0

=
∥∥(u⊺v)(w⊺x)

∥∥
C0 . ‖u‖‖v‖‖w‖

(
n0

n0

) 1
2

,

and thus
∥∥∂W0 f 1(x)

∥∥
C0(D;∗) .

(
n0

n0

) 1
2

.

In conclusion, it follows that

∥∥∂Wk f ℓ(x)
∥∥

C0(D;∗) .
(

n0

nk

) 1
2

.

The proof is complete.

Lemma 6.18 (Lemma 5.5, Restated from the Overview). Assume that σ satisfies the growth
and derivative bounds (5.3), (5.5) and may be different in each layer. Assume the weights are
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defined by the gradient flow (2.5) and satisfy

‖Wℓ(0)‖n−
1
2

ℓ
. 1, ℓ = 0, . . . , L,

‖Wℓ(0)−Wℓ(τ)‖n−
1
2

ℓ
. 1, 0 ≤ τ < t.

Then

‖Wℓ(t)−Wℓ(0)‖n−
1
2

ℓ
.

n
1
2
0

nℓ

∫ t

0
‖κ‖

C0(D)′ dx dτ,

where C0(D)
′

is the dual space of C0(D) and n0 := n1.

Proof. By assumption, we have

‖Wℓ(τ)‖n−
1
2

ℓ
. 1, 0 ≤ τ < t, ℓ = 0, . . . , L.

With loss L and residual κ = fθ − f , because

d

dτ
Wℓ = −∇WℓL =

∫

D
κ(x)DWℓ

f L+1(x) dx,

we have

‖Wℓ(t)−Wℓ(0)‖ =
∥∥∥∥
∫ t

0

d

dτ
Wℓ(τ) dτ

∥∥∥∥

=

∥∥∥∥
∫ t

0

∫

D
κ(x)DWℓ

f L+1(x) dx dτ

∥∥∥∥

≤
∫ t

0

∫

D
|κ(x)|

∥∥DWℓ
f L+1(x)

∥∥ dx dτ

.

(
n0

nℓ

) 1
2
∫ t

0
‖κ‖

C0(D)
′ dx dτ,

where in the last step we have used Lemma 6.17. Multiplying with n−1/2
ℓ

shows the result.
The proof is complete.

6.5 Proof of Theorem 2.1: Main result

Proof of Theorem 2.1. The result follows directly from Lemma 5.2 with the smoothness spa-

cesHα = Hα(Sd−1). While the lemma bounds the residual κ in theH−α andHα norms, we
aim for anH0 = L2(S

d−1) bound. This follows directly from the interpolation inequality

‖ · ‖L2(Sd−1) = ‖ · ‖H0(Sd−1) ≤ ‖ · ‖
1
2

H−α(Sd−1)
‖ · ‖

1
2

Hα(Sd−1)
.

It remains to verify all assumptions. To this end, first note that the initial weights satisfy

‖W(0)ℓ‖n−
1
2

ℓ
. 1, ℓ = 0, . . . , L (6.23)
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with probability at least 1− 2e−cm since nℓ ∼ m by assumption, see e.g. [67, Theorem 4.4.5].
Note that the inequality also holds for the not approximately square matrix W0, because
we have defined n0 = n1 and not as the number of columns d ≤ n1. Then, the assumptions
are shown as follows:

1. The weights stay close to the initial (5.7): We use the scaled matrix norm

‖θ‖∗ := max
L∈[L]

‖Wℓ‖n−
1
2

ℓ

to measure the weight distance. Then, by (6.23) with p0(m) := 2Le−m given that
‖θ(τ)− θ(0)‖∗ ≤ 1, Lemma 5.5 implies that

‖θ(t)− θ(0)‖∗ = max
ℓ∈[L]
‖Wℓ(t)−Wℓ(0)‖n−

1
2

ℓ

.
n

1
2
0

nℓ

∫ t

0
‖κ‖

C0(Sd−1)
′ dx dτ . m−

1
2

∫ t

0
‖κ‖H0(Sd−1) dx dτ,

where the last step follows from the assumption n0 ∼ . . . ∼ nL−1 =: m and the
embedding

‖ · ‖
C0(Sd−1)

′ . ‖ · ‖H0(Sd−1)′ = ‖ · ‖H0(Sd−1),

which follows directly from the inverted embedding ‖ · ‖H0(Sd−1) . ‖ · ‖C0(Sd−1).

2. Norms and Scalar Product (5.8): Both are well known for Sobolev spaces, and follow
directly from norm definition (7.5) with Cauchy-Schwarz.

3. Concentration of the Initial NTK (5.9): Since by (2.4) the first four derivatives of the
activation function have at most polynomial growth, we have

∥∥∂i(σa)
∥∥

N
=
∫

R

[
σ(i)(ax)ai

]2
dN (0, 1)(x) . 1

for all a ∈ {Σk(x, x) : x ∈ D} contained in the set {cΣ, CΣ} for some CΣ ≥ 0, by
assumption. Together with α + ǫ < 1/2 for sufficiently small ǫ, hidden dimensions
d . n0 ∼ . . . ∼ nL =: m and the concentration result Lemma 5.4 we obtain, with
probability at least

1− p∞(m, τ) := 1− cL(e−m + e−τ)

the bound

‖Γ̂− Γ‖C0;α+ǫ,α+ǫ . L

[√
d

m
+

√
τ

m
+

τ

m

]

for the neural tangent kernel for all 0 ≤ τ = u0 = · · · = uL−1 . 1. By Lemma 7.10,
the kernel bound directly implies the operator norm bound

‖H − Hθ(0)‖Hα←H−α . L

[√
d

m
+

√
τ

m
+

τ

m

]
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for the corresponding integral operators H and Hθ(0), with kernels Γ and Γ̂, respec-

tively. If τ/m . 1, we can drop the last term and thus satisfy assumption (5.9).

4. Hölder continuity of the NTK (5.10): By (6.23) with probability at least

1− pL(m) := 1− Le−m

we have ‖θ(0)‖∗ . 1 and thus for all perturbations θ̄ with
∥∥θ̄ − θ(0)

∥∥
∗ ≤ h ≤ 1 by

Lemma 5.3 that
‖Γ̂− ¯̂Γ‖C0;α+ǫ,α+ǫ . Lh1−α−ǫ

for any sufficiently small ǫ > 0. By Lemma 7.10, the kernel bound implies the opera-
tor norm bound

‖Hθ(0) − Hθ̄‖Hα←H−α . Lhγ

for any γ < 1− α and integral operators Hθ(0) and Hθ̄ corresponding to kernels Γθ(0)

and Γ̂θ̄ , respectively.

5. Coercivity (assumption 5 of Lemma 5.2): Is given by assumption.

Thus, all assumptions of Lemma 5.2 are satisfied, which directly implies the theorem as
argued above.

7 Technical supplements

7.1 Hölder spaces

Definition 7.1. Let U and V be two normed spaces.

1. For 0 < α ≤ 1, we define the Hölder spaces on the domain D ⊂ U as all functions f : D→ V
for which the norm

‖ f‖C0;α(D;V) := max
{
‖ f‖C0(D;V), | f |C0;α (D;V)

}
< ∞

is finite, with

| f |C0 (D;V) := sup
x∈D

‖ f (x)‖V , | f |C0;α(D;V) := sup
x 6=x̄∈D

‖ f (x)− f (x̄)‖V

‖x− x̄‖α
U

.

2. For 0 < α, β ≤ 1, we define the mixed Hölder spaces on the domain D× D ⊂ U ×U as all
functions g : D× D→ V for which the norm

‖ f‖C0;α,β(D;V) := max
a∈{0,α}
b∈{0,β}

| f |C0;a,b(D;V) < ∞

with

| f |C0;0,0(D;V) := sup
x,y∈D

‖ f (x, y)‖V ,
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| f |C0;α,0(D;V) := sup
x 6=x̄,y∈D

‖ f (x, y)− f (x̄, y)‖V

‖x− x̄‖α
U

,

| f |C0;0,β(D;V) := sup
x,y 6=ȳ∈D

‖ f (x, y)− f (x, ȳ)‖V

‖y− ȳ‖β
U

,

| f |C0;α,β(D;V) := sup
x 6=x̄,y 6=ȳ∈D

‖ f (x, y)− f (x̄, y)− f (x, ȳ) + f (x̄, ȳ)‖V

‖x− x̄‖α
U‖y− ȳ‖β

U

.

3. We use the following abbreviations:

(a) If D is understood from context and V = Rn, both equipped with the Euclidean norm,
we write

C0;α = C0;α(D) = C0;α
(

D; ℓ2(R
n)
)
.

(b) If V = Lψi
, i = 1, 2 is an Orlicz space, we write

C0;α(D; ψi) = C0;α(D; Lψi
).

We use analogous abbreviations for all other spaces.

It is convenient to express Hölder spaces in terms of finite difference operators,

∆0
h f (x) = f (x), ∆α

h f (x) = ‖h‖−α
U [ f (x + h)− f (x)], α > 0,

which satisfy product and chain rules similar to derivatives. We may also consider these
as functions in both x and h

∆α f : (x, h) ∈ ∆D → V, ∆α f (x, h) = ∆α
h f (x)

on the domain
∆D := {(x, h) : x ∈ D, x + h ∈ D} ⊂ U×U. (7.1)

Then, the Hölder norms can be equivalently expressed as

| f |C0;α(D;V) = sup
x 6=x+h∈D

∥∥∆α
h f
∥∥

V
= ‖∆α f‖C0(∆D;V).

If f = f (x, y) depends on multiple variables, we denote the partial finite difference oper-
ators by ∆α

x,hx
and ∆α

y,hy
defined by

∆0
x,hx

f (x, y) := f (x, y), ∆α
x,hx

f (x, y) := ‖hx‖−α
U [ f (x + hx, y)− f (x, y)],

∆0
y,hy

f (x, y) := f (x, y), ∆
β
y,hy

f (x, y) := ‖hy‖−β
U [ f (x, y + hy)− f (x, y)]

for α > 0, and likewise

∆α
x f (x, y, hx) = ∆α

x,hx
f (x, y), ∆α

y f (x, y, hy) = ∆α
y,hy

f (x, y).



J. Mach. Learn., 3(2):107-175 158

Then, the mixed Hölder norms is

| f |C0;α,β(D;V) = sup
x 6=x+hx∈D
y 6=y+hy∈D

∥∥∆α
x,hx

∆
β
y,hy

f (x, y)
∥∥

V
=
∥∥∆α

x∆
β
y f
∥∥

C0(∆D×∆D;V)

for all α, β ≥ 0 and likewise for all other Hölder semi-norms.
In the following lemma, we summarize several useful properties of finite differences.

Lemma 7.1. Let U, V and W be three normed spaces, D ⊂ U and 0 < α, β ≤ 1.

1. Product rule: Let f , g : D → R. Then

∆α
h[ f g](x) =

[
∆α

h f (x)
]
g(x) + f (x + h)

[
∆α

h g(x)
]
.

2. Chain rule: Let f : D→ V and g : f (D) →W. Define

∆̄h( f , g)(x) :=
∫ 1

0
f ′
(
tg(x + h) + (1− t)g(x)

)
dt.

Then
∆α

h( f ◦ g)(x) = ∆̄h( f , g)(x)∆α
h g(x).

Proof. 1. Plugging in the definitions, we have

∆α
h[ f g](x) = ‖h‖−α

U [ f (x + h)g(x + h)− f (x)g(x)]

= ‖h‖−α
U

[
[ f (x + h)− f (x)]g(x) + f (x + h)[g(x + h)− g(x)]

]

=
[
∆α

h f (x)
]
g(x) + f (x + h)

[
∆α

hg(x)
]
.

2. Follows directly from the integral form of the Taylor remainder

∆α
h( f ◦ g)(x) = ‖h‖−α

U

[
f
(

g(x + h)
)
− f

(
g(x)

)]

= ‖h‖−α
U

∫ 1

0
f ′
(
tg(x + h) + (1− t)g(x)

)
dt[g(x + h)− g(x)]

= ∆̄h( f , g)(x)∆α
h g(x).

The proof is complete.

In the following lemma, we summarize several useful properties of Hölder spaces.

Lemma 7.2. Let U and V be two normed spaces, D ⊂ U and 0 < α, β ≤ 1.

1. Interpolation Inequality: For any f ∈ C1(D; V), we have

‖ f‖C0;α(D;V) ≤ 2‖ f‖1−α
C0(D;V)

‖ f‖α
C0;1(D;V).

2. Assume σ satisfies the growth and Lipschitz conditions

‖σ (x) ‖V . ‖x‖V , ‖σ (x)− σ (x̄) ‖V . ‖x− x̄‖V .
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Then
‖σ ◦ f‖C0;α(D;V) . ‖ f‖C0;α(D;V).

3. Let V1 and V2 be two normed spaces and f , g : D → V1. Let · : V1 × V1 → V2 be
a distributive product that satisfies ‖u · v‖V2

. ‖u‖V1
‖v‖V1

. Then

‖ f · g‖C0;α,β(D;V2)
. ‖ f‖C0;α(D;V1)

‖g‖C0;β(D;V1)
.

4. Let V = R and f , g : D× D→ R. Then

‖ f g‖C0;α,β(D) . ‖ f‖C0;α,β(D)‖g‖C0;α,β(D).

Proof. 1. The inequality follows directly from

| f |C0;α(D;V) = sup
x,x̄∈D

‖ f (x)− f (x̄)‖V

‖x− x̄‖α
U

≤ sup
x 6=x̄∈D

‖ f (x)− f (x̄)‖1−α
V sup

x 6=x̄∈D

‖ f (x)− f (x̄)‖α
V

‖x− x̄‖α
U

≤ 2‖ f‖1−α
C0(D;V)

‖ f‖α
C0;1(D;V).

2. Follows from

|σ ◦ f |C0;α(D;V) = sup
x,x̄∈D

∥∥σ
(

f (x)
)
− σ

(
f (x̄)

)∥∥
V

‖x− x̄‖α
U

. sup
x,x̄∈D

‖ f (x)− f (x̄)‖α
V

‖x− x̄‖α
U

= ‖ f‖C0;α(D;V)

and likewise for the | · |C0(D;V) norm.

3. Follows from

| f · g|C0;α,β(D;V2)
= sup

x,x̄,y,ȳ∈D

‖ f (x) · g(y)− f (x̄) · g(y)− f (x) · g(ȳ) + f (x̄) · g(ȳ)‖V2

‖x− x̄‖α
U‖y− ȳ‖β

U

= sup
x,x̄,y,ȳ∈D

‖[ f (x)− f (x̄)] · [g(y)− g(ȳ)]‖V2

‖x− x̄‖α
U‖y− ȳ‖β

U

. sup
x,x̄,y,ȳ∈D

‖ f (x)− f (x̄)‖V1
‖g(y)− g(ȳ)‖V1

‖x− x̄‖α
U‖y− ȳ‖β

U

= | f |C0;α(D;V1)
|g|C0;β(D;V1)

and analogous identities for the remaining semi norms | f g|C0;0,0(D;V2)
, | f g|C0;α,0(D;V2)

,

| f g|C0;0,β(D;V2)
.
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4. We only show the bound for | · |C0;α,β(D). The other semi-norms follow analogously.

Applying the product rule (Lemma 7.1)

∆α
x,hx

[ f (x, y)g(x, y)] =
[
∆α

x,hx
f (x, y)

]
g(x, y) + f (x + hx, y)

[
∆α

x,hx
f (x, y)

]
,

and then analogously for ∆
β
y,hy

∆
β
y,hy

∆α
x,hx

[ f (x, y)g(x, y)]

= ∆
β
y,hy

{[
∆α

x,hx
f (x, y)

]
g(x, y) + f (x + hx, y)

[
∆α

x,hx
f (x, y)

]}

=
[
∆

β
y,hy

∆α
x,hx

f (x, y)
]
g(x, y) +

[
∆α

x,hx
f (x, y + hy)

][
∆

β
y,hy

g(x, y)
]

+
[
∆

β
y,hy

f (x + hx, y)
][

∆α
x,hx

f (x, y)
]
+ f (x + hx, y + hy)

[
∆

β
y,hy

∆α
x,hx

f (x, y)
]
.

Taking the supremum directly shows the result.

The following two lemmas contain chain rules for Hölder and mixed Hölder spaces.

Lemma 7.3. Let D ⊂ U and D f ⊂ V be domains in normed spaces U, V and W. Let g : D→ D f

and f : D f →W. Let 0 < α, β ≤ 1. Then

‖∆α( f ◦ g)‖C0(∆D;W) ≤ ‖ f ′‖C0;0(D f ;L(V,W))‖g‖C0;α(D;V),

and

‖∆α( f ◦ g)− ∆α( f ◦ ḡ)‖C0(∆D;W)

≤ ‖ f ′‖C0;1(D f ;L(V,W))‖g− ḡ‖C0(D;V)‖ḡ‖C0;α(D;V)

+ ‖ f ′‖C0;0(D f ;L(V,W))‖g− ḡ‖C0;α(D;V),

≤ 2‖ f ′‖C0;1(D f ;L(V,W))‖g− ḡ‖C0;α(D;V) max{1, ‖ḡ‖C0;α(D;V)},

where L(V, W) is the space of all linear maps V →W with induced operator norm.

Proof. Note that

∆̄h( f , g)(x) :=
∫ 1

0
f ′
(
tg(x + h) + (1− t)g(x)

)
dt

takes values in the linear maps L(V, W) and thus

‖∆̄h( f , g)(x)v‖W ≤ ‖∆̄h( f , g)(x)‖L(V,W)‖v‖V

for all v ∈ V. Using the chain rule Lemma 7.1, it follows that
∥∥∆α

h( f ◦ g)(x)
∥∥

W
=
∥∥∆̄h( f , g)(x)∆α

h g(x)
∥∥

W

≤ ‖∆̄h( f , g)(x)‖L(V,W)

∥∥∆α
hg(x)

∥∥
V

,
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and
∥∥∆α

h( f ◦ g)(x)− ∆α
h( f ◦ ḡ)(x)

∥∥
W

=
∥∥∆̄h( f , g)(x)∆α

h g(x)− ∆̄h( f , ḡ)(x)∆α
h ḡ(x)

∥∥
W

≤ ‖∆̄h( f , g)(x)− ∆̄h( f , ḡ)(x)‖L(V,W)

∥∥∆α
h g(x)

∥∥
V

+ ‖∆̄h( f , ḡ)(x)‖L(V,W)

∥∥∆α
h g(x)− ∆α

h ḡ(x)
∥∥

V
.

Hence, the result follows from

‖∆̄h( f , ḡ)(x)‖L(V,W) ≤ ‖ f ′‖C0(D f ;L(V,W)), (7.2)

and

‖∆̄h( f , g)(x)− ∆̄h( f , ḡ)(x)‖L(V,W)

≤ ‖ f ′‖C0;1(D f ;L(V,W))

∫ 1

0
‖t(g− ḡ)(x + h) + (1− t)(g− ḡ)(x)‖ dt

≤ ‖ f ′‖C0;1(D f ;L(V,W))‖g− ḡ‖C0(D;V), (7.3)

where we have used that unlike ∆α
h , the integral ∆̄h does not have an inverse ‖h‖−α

U factor.
The proof is complete.

Lemma 7.4. Let D ⊂ U and D f ⊂ V be domains in normed spaces U, V and W. Let g : D→ D f

and f : D f →W. Let 0 < α, β ≤ 1. Then

∥∥∆α∆β[ f ◦ g− f ◦ ḡ]
∥∥

C0(∆D×∆D;W)

≤ ‖ f‖C3(D f ,W)‖g− ḡ‖C0;α,β(D;V) max
{

1, ‖g‖C0;α,β(D;V)

}
max

{
1, ‖ḡ‖C0;α,β(D;V)

}
.

Proof. In the following, we fix x and y, but only include it in the formulas if necessary, e.g.
f = f (x, y). By the chain rule Lemma 7.1, we have

∆
β
y,hy

[ f ◦ g− f ◦ ḡ] = ∆̄y,hy
( f , g)∆

β
y,hy

g− ∆̄y,hy
( f , ḡ)∆

β
y,hy

ḡ

=
[
∆̄y,hy

( f , g)− ∆̄y,hy
( f , ḡ)

]
∆

β
y,hy

g

+ ∆̄y,hy
( f , ḡ)

[
∆

β
y,hy

g− ∆
β
y,hy

ḡ
]

=: I + I I.

Applying the product rule Lemma 7.1 to the first term yields

∥∥∆α
x,hx

I
∥∥

W
=
∥∥[∆α

x,hx
[∆̄y,hy

( f , g)]− ∆α
x,hx

[∆̄y,hy
( f , ḡ)]

]
∆

β
y,hy

g(x + hx, y)

+
[
∆̄y,hy

( f , g)− ∆̄y,hy
( f , ḡ)

]
∆α

x,hx
∆

β
y,hy

g
∥∥

W

≤
∥∥[∆α

x,hx
[∆̄y,hy

( f , g)]− ∆α
x,hx

[∆̄y,hy
( f , ḡ)]

]∥∥
L(V,W)

∥∥∆
β
y,hy

g(x + hx, y)
∥∥

W

+
∥∥[∆̄y,hy

( f , g)− ∆̄y,hy
( f , ḡ)

]∥∥
L(V,W)

∥∥∆α
x,hx

∆
β
y,hy

g
∥∥

W
.
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Likewise, applying the product rule Lemma 7.1 to the second term yields

∥∥∆α
x,hx

I I
∥∥

W
=
∥∥∆α

x,hx
∆̄y,hy

( f , ḡ)
[
∆

β
y,hy

g− ∆
β
y,hy

ḡ
]∥∥

W

+
∥∥∆̄y,hy

( f , ḡ)(x + hx, y)
[
∆α

x,hx
∆

β
y,hy

g− ∆α
x,hx

∆
β
y,hy

ḡ
]∥∥

W

≤
∥∥∆α

x,hx
∆̄y,hy

( f , ḡ)
∥∥

L(V,W)

∥∥∆
β
y,hy

g− ∆
β
y,hy

ḡ
∥∥

W

+
∥∥∆̄y,hy

( f , ḡ)(x + hx, y)
∥∥

L(V,W)

∥∥∆α
x,hx

∆
β
y,hy

g− ∆α
x,hx

∆
β
y,hy

ḡ
∥∥

W
.

All terms involving only g and ḡ can be upper bounded by ‖g‖C0;α,β(D;V), ‖ḡ‖C0;α,β(D;V) or

‖g− ḡ‖C0;α,β(D;V). The terms

∥∥∆̄y,hy
( f , ḡ)(x + hx, y)

∥∥
L(V,W)

≤ ‖ f ′‖C0(D f ;L(V,W)),∥∥[∆̄y,hy
( f , g)− ∆̄y,hy

( f , ḡ)
]∥∥

L(V,W)
≤ ‖ f ′‖C0;1(D f ;L(V,W))‖g− ḡ‖C0(D;V)

are bounded by (7.2) and (7.3) in the proof of Lemma 7.3. For the remaining terms, define

G(x) := tg(x, y + hy) + (1− t)g(x, y)

and likewise Ḡ. Then

‖G‖C0;α(D,V) . ‖g‖C0;α,β(D,V), ‖G− Ḡ‖C0;α(D,V) . ‖g− ḡ‖C0;α,β(D,V).

Thus, by Lemma 7.3, we have

∥∥∆α
x,hx

[
∆̄y,hy

( f , g)
]∥∥

L(V,W)
=

∥∥∥∥
∫ 1

0
∆α

x,hx
( f ′ ◦ G) dt

∥∥∥∥
L(V,W)

≤ ‖ f ′′‖C0;0(D f ;L(V,L(V,W)))‖g‖C0;α,β(D;V),

and
∥∥∆α

x,hx

[
∆̄y,hy

( f , g)− ∆̄y,hy
( f , ḡ)

]∥∥
L(V,W)

=

∥∥∥∥
∫ 1

0
∆α

x,hx
[ f ′ ◦ G− f ′ ◦ Ḡ] dt

∥∥∥∥
L(V,W)

≤ 2‖ f ′′‖C0;1(D f ;L(V,L(V,W)))‖g− ḡ‖C0;α,β(D;V) max
{

1, ‖ḡ‖C0;α,β(D;V)

}
.

Combining all inequalities yields the proof.

7.2 Concentration

In this section, we recall the definition of Orlicz norms, some basic properties and the
chaining concentration inequalities we use to show that the empirical NTK is close to the
NTK.
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Definition 7.2. For random variable X, we define the sub-Gaussian and sub-exponential norms
by

‖X‖ψ2
= inf

{
t > 0 : E

[
exp

(
X2

t2

)]
≤ 2

}
,

‖X‖ψ1
= inf

{
t > 0 : E

[
exp

( |X|
t

)]
≤ 2

}
.

Lemma 7.5. Assume that σ satisfies the growth and Lipschitz conditions

|σ(x)| ≤ G|x|, |σ(x)− σ(y)| ≤ L|x− y|
for all x, y ∈ R and let X, Y be two sub-Gaussian random variables. Then

‖σ (X) ‖ψ2
. G‖X‖ψ2

, ‖σ (X)− σ (Y) ‖ψ2
. L‖X−Y‖ψ2

.

Proof. For two random variables X and Y with X2 ≤ Y2 almost surely, we have

‖X‖ψ2
= inf

{
t > 0 : E

[
exp

(
X2

t2

)]
≤ 2

}

≤ inf

{
t > 0 : E

[
exp

(
Y2

t2

)]
≤ 2

}
= ‖Y‖ψ2

.

Thus, the result follows directly form

σ(X)2 ≤ G2X2, [σ(x)− σ(y)]2 ≤ L2[x− y]2.

The proof is complete.

Lemma 7.6. Let X and Y be two sub-Gaussian random variables. Then

‖XY‖ψ1
≤ ‖X‖ψ2

‖Y‖ψ2
.

Proof. Let

t = ‖X‖
1
2
ψ2
‖Y‖

1
2
ψ2

=

∥∥∥∥
( ‖Y‖ψ2

‖X‖ψ2

) 1
2

X

∥∥∥∥
ψ2

=

∥∥∥∥
(‖X‖ψ2

‖Y‖ψ2

) 1
2

Y

∥∥∥∥
ψ2

.

Ignoring a simple ǫ perturbation, we assume that the infima in the definition of the ‖X‖ψ2

and ‖Y‖ψ2
norms are attained. Then

exp

( ‖Y‖ψ2

‖X‖ψ2

X2

t2

)
≤ 2, exp

(‖X‖ψ2

‖Y‖ψ2

Y2

t2

)
≤ 2.

Thus, Young’s inequality implies

exp

( |XY|
t

)
≤ exp

(
1

2

‖Y‖ψ2

‖X‖ψ2

X2

t2
+

1

2

‖X‖ψ2

‖Y‖ψ2

Y2

t2

)

≤ exp

( ‖Y‖ψ2

‖X‖ψ2

X2

t2
+
‖X‖ψ2

‖Y‖ψ2

Y2

t2

) 1
2

≤
√

2
√

2 ≤ 2.
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Hence,
‖XY‖ψ1

≤ t ≤ ‖X‖ψ2
‖Y‖ψ2

.

The proof is complete.

Theorem 7.1 ([16, Theorem 3.5]). Let X be a normed linear space. Assume the X valued sep-
arable random process (Xt)t∈T, has a mixed tail, with respect to some semi-metrics d1 and d2

on T, i.e.
Pr
[
‖Xt − Xs‖ ≥

√
ud2(t, s) + ud1(t, s)

]
≤ 2e−u

for all s, t ∈ T and u ≥ 0. Set

γα(T, di) := inf
T

sup
t∈T

∞

∑
n=0

2
n
a d(t, Tn), α ∈ {0, 1},

∆d(T) := sup
s,t∈T

d(s, t),

where the infimum is taken over all admissible sequences Tn ⊂ T with |T0| = 1 and |Tn| ≤ 22n
.

Then for any t0 ∈ T,

Pr

[
sup
t∈T

‖Xt − Xt0
‖ ≥ C

[
γ2(T, d2) + γ1(T, d1) +

√
u∆d2

(T) + u∆d1
(T)
] ]
≤ e−u.

Remark 7.1. [16, Theorem 3.5] assumes that T is finite. Using separability and monotone
convergence, this can be extended to infinite T by standard arguments.

Lemma 7.7. Let 0 ≤ α ≤ 1 and D ⊂ Rd be as set of Euclidean norm | · |-diameter smaller than
R ≥ 1. Then

γ1(D, | · |α) . 3α + 1

α
R1+αd, γ2(D, | · |α) .

(
3α

4α

) 1
2

R
α
2 d

1
2 .

Proof. Let N(D, | · |α, u) be the covering number of D, i.e. the smallest number of u-balls
in the metric | · |α necessary to cover D. It is well known (e.g. [16, Eq. (2.3)]) that

γi(D, | · |α) .
∫ ∞

0
[log N(D, | · |α, u)]

1
i du .

∫ Rα

0
[log N(D, | · |α, u)]

1
i du,

where in the last step we have used that N(D, | · |α, u) = 1 for u ≥ Rα and thus its log-
arithm is zero. Since every u-cover in the | · | norm is a uα cover in the | · |α metric, the
covering numbers can be estimated by (see e.g. [67])

N(D, | · |α, u) = N
(

D, | · |, u
1
α
)
≤
(

3R

u
1
α

)d

=

(
(3R)α

u

) d
α

.

Hence,

γ1(D, | · |α) .
∫ Rα

0
log

(
(3R)α

u

) d
α

du =
d

α

∫ Rα

0
α log(3R)− log u du

≤ d

α
[3αR1+α − Rα log Rα + Rα] ≤ d

α
(3α + 1)R1+α,
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and using log x ≤ x− 1 ≤ x

γ2(D, | · |α) .
(

d

α

) 1
2
∫ Rα

0

[
log

(3R)α

u

] 1
2

du .

(
d

α

) 1
2
∫ Rα

0

[
(3R)α

u

] 1
2

du

.

(
3αdRα

α

) 1
2
∫ Rα

0

[
1

u

] 1
2

du .

(
3αd

4α

) 1
2

R
α
2 .

The proof is complete.

The following is a rewrite of the chaining inequality [16, Theorem 3.5] or Theorem 7.1,
that is compatible with the terminology used in the NTK concentration proof.

Corollary 7.1. For j ∈ [N], let (Xj,t)t∈D be real valued independent stochastic processes on some
domain D with radius . 1. Assume that the map t → Xj,t with values in the Orlicz space Lψ1

is
Hölder continuous

‖Xj,·‖C0;α(D;ψ1)
≤ L.

Then

Pr

[
sup
t∈T

∥∥∥∥∥
1

N

N

∑
j=1

Xj,t −E
[
Xj,t

]
∥∥∥∥∥ ≥ CL

[(
d

N

) 1
2

+
d

N
+
( u

N

) 1
2
+

u

N

]]
≤ e−u.

Proof. We show the result with Theorem 7.1 for the process

Yt :=
1

N

N

∑
j=1

Xj,t −E
[
Xj,t

]
.

We first show that it has mixed tail. For all s, t ∈ D, we have

‖Xj,t − Xj,s‖ψ1
≤ L|s− t|α.

Hence, Bernstein’s inequality implies

Pr [|Yt −Ys| ≥ τ] = Pr

[∣∣∣∣∣
1

N

N

∑
j=1

[Xj,t − Xj,s ]−E
[
Xj,t − Xj,s

]
∣∣∣∣∣ ≥ τ

]

≤ 2 exp

(
−cN min

{
τ2

L2|t− s|2α
,

τ

L|t− s|α
})

.

An elementary computation shows that

u := cN min

{
τ2

L2|t− s|2 ,
τ

L|t− s|

}
⇒ τ = L|t− s|α max

{√
u

cN
,

u

cN

}
,

and thus

Pr

[
|Yt −Ys| ≥ L|t− s|α max

{√
u

cN
,

u

cN

}]
≤ 2 exp(−u). (7.4)
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I.e. the centered process Yt has mixed tail with

di(t, s) := (cN)−
1
i L|t− s|α

for i = 1, 2, which are metrics because α ≤ 1. Moreover the γi-functional are linear in
scaling

γi(D, di) = (cN)−
1
i Lγi(D, | · |α),

and thus by Lemma (7.7)

γ1(D, | · |α) . L
d

N
, γ2(D, | · |α) . L

(
d

N

) 1
2

.

Thus, by chaining Theorem 7.1 we have

Pr

[
sup
t∈T

‖Yt −Yt0
‖ ≥ CL

[(
d

N

) 1
2

+
d

N
+
( u

N

) 1
2
+

u

N

]]
≤ e−u,

which directly yields the corollary with supt∈D ‖Yt‖ ≤ supt∈D ‖Yt −Yt0
‖+ ‖Yt0

‖ and the
last term ‖Yt0

‖, for some arbitrary t0, estimated by Bernstein inequality and ‖Xj,t0
‖ψ1
≤ L.

The proof is complete.

7.3 Hermite polynomials

Hermite polynomials are defined by

Hn(x) := (−1)ne
x2

2
dn

dxn
e−

x2

2 ,

and orthogonal with respect to the Gaussian weighted scalar product

〈 f , g〉N := Eu∼N (0,1) [ f (u)g(u)] =
1√
2π

∫

R

f (u)g(u)e−
x2

2 du.

Lemma 7.8. 1. Normalization:
〈Hn, Hm〉N = n! δnm.

2. Derivatives: Let f : R → R be k times continuously differentiable so that all derivatives
smaller or equal to k have at most polynomial growth for x→ ±∞. Then

〈 f , Hn〉N =
〈

f (k), Hn−k

〉
N

.

Proof. The normalization is well known, we only show the formula for the derivative. By
the growth condition, we have

∣∣∣∣ f (k)(x)
dn−k−1

dxn−k−1
e−

x2

2

∣∣∣∣ → 0 for x → ±∞.
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Thus, in the integration by parts formula below all boundary terms vanish and we have

〈 f , Hn〉N =
1√
2π

∫

R

f (u)Hn(u)e
− x2

2 du

=
1√
2π

∫

R

f (u)

[
(−1)ne

x2

2
dn

dxn
e−

x2

2

]
e−

x2

2 du

=
1√
2π

(−1)n
∫

R

f (u)
dn

dxn
e−

x2

2 du

=
1√
2π

(−1)n−k
∫

R

f (k)(u)
dn−k

dxn−k
e−

x2

2 du

=
1√
2π

∫

R

f (k)(u)

[
(−1)n−ke

x2

2
dn−k

dxn−k
e−

x2

2

]
e−

x2

2 du

=
〈

f (k), Hn−k

〉
N

.

The proof is complete.

Theorem 7.2 (Mehler’s Theorem). Let

A =

[
1 ρ
ρ 1

]
.

Then the multi- and uni-variate normal density functions satisfy

pdfN (0,A) =
∞

∑
k=0

Hk(u)Hk(v)
ρk

k!
pdfN (0,1)(u)pdfN (0,1)(v).

Proof. See [71] for Mehler’s theorem in the form stated here.

7.4 Sobolev spaces on the sphere

7.4.1 Definition and properties

We use two alternative characterizations of Sobolev spaces on the sphere. The first is based
on spherical harmonics, which are also eigenfunctions of the NTK and thus establishes
connections to the available NTK literature. Second, we consider Sobolev Slobodeckij
type norms, which are structurally similar to Hölder norms and allow connections to the
perturbation analysis in this paper.

The spherical harmonics

Y
j
ℓ
, ℓ = 0, 1, 2, . . . , 1 ≤ j ≤ ν(ℓ)

of degree ℓ and order j are an orthonormal basis on the sphere L2(S
d−1), comparable to

Fourier bases for periodic functions. For any f ∈ L2(S
d−1), we denote by f̂ℓj = 〈 f , Y

j
ℓ
〉 the
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corresponding basis coefficient. The Sobolev space Hα(Sd−1) consists of all function for
which the norm

‖ f‖2
Hα(Sd−1)

=
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

(
1 + ℓ

1
2 (ℓ+ d− 2)

1
2
)2α∣∣ f̂ℓj

∣∣2

is finite. We write Hα = Hα(Sd−1) if the domain is understood from context. Since the
constants in this paper are dimension dependent, we simplify this to the equivalent norm

‖ f‖2
Hα(Sd−1)

=
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

(1 + ℓ)2α
∣∣ f̂ℓj

∣∣2. (7.5)

Another equivalent norm, similar to Sobolev-Slobodeckij norms, is given in [7, Proposi-
tion 1.4] and defined as follows for the case 0 < α < 2. For the spherical cap centered at

x ∈ Sd−1 and angle t ∈ (0, π) given by

C(x, t) :=
{

y ∈ S
d−1 : x · y ≥ cos t

}

set

At( f )(x) := −
∫

C(x,t)
f (τ) dτ.

With

Sα( f )2(x) :=
∫ π

0
|At f (x)− f (x)|2 t−2α−1 dt

the Sobolev norm on the sphere is equivalent to

‖ f‖Hα(Sd−1) ∼ ‖Sα( f )‖L2(Sd−1) . (7.6)

Using the definition (7.5) for a < b < c, the interpolation inequality

‖ · ‖Hb(Sd−1) . ‖ · ‖
c−b
c−a

Ha(Sd−1)
‖ · ‖

b−a
c−a

Hc(Sd−1)
,

〈·, ·〉H−α(Sd−1) . ‖ · ‖H−3α(Sd−1)‖ · ‖Hα(Sd−1)

(7.7)

follows directly from Cauchy-Schwarz. Moreover, we have the following embedding.

Lemma 7.9. Let 0 < α < 1. Then for any ǫ > 0 with α + ǫ ≤ 1, we have

‖ · ‖Hα(Sd−1) . ‖ · ‖C0;α+ǫ(Sd−1).

Proof. The proof is standard and similar to Lemma 7.10.

7.4.2 Kernel bounds

In this section, we provide bounds for the kernel integral

〈 f , g〉k :=
∫∫

D×D
f (x)k(x, y)g(y) dx dy
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on the sphere D = Sd−1 in Sobolev norms on the sphere. Clearly, for 0 ≤ α, β < 2, we have

〈 f , g〉k ≤ ‖ f‖H−α

∥∥∥∥
∫

D
k(·, y)g(y) dy

∥∥∥∥
Hα

≤ ‖ f‖H−α‖k‖Hα←H−β‖g‖H−β ,

where the norm of k is the induced operator norm. While the norms for f and g are the
ones used in the convergence analysis, concentration and perturbation results for k are
computed in mixed Hölder norms. We show in this section, that these bound the operator
norm.

Indeed, 〈 f , g〉k is a bilinear form on f and g and thus is bounded by the tensor product
norms

〈 f , g〉k ≤ ‖ f ⊗ g‖(Hα⊗Hβ)′‖k‖Hα⊗Hβ ≤ ‖ f‖H−α‖g‖H−β‖k‖Hα⊗Hβ ,

where ·′ denotes the dual norm. The Hα ⊗ Hβ norm contains mixed smoothness and
with Sobolev-Slobodeckij type definition (7.6) is easily bounded by corresponding mixed
Hölder regularity. In order to avoid rigorous characterization of tensor product norms on
the sphere, the following lemma shows the required bounds directly.

Lemma 7.10. Let 0 < α, β < 1. Then for any ǫ > 0 with α + ǫ ≤ 1 and β + ǫ < 1, we have
∫∫

D×D
f (x)k(x, y)g(y) dx dy ≤ ‖ f‖H−α(Sd−1)‖g‖H−β(Sd−1)‖k‖C0;α+ǫ,β+ǫ(Sd−1).

Proof. Since for any u, v,
∫

u(x)v(x) dx =
∫

u(x)
v(x)

‖v‖Hα
dx ‖v‖Hα

≤ sup
‖w‖Hα≤1

∫
u(x)w dx ‖v‖Hα ≤ ‖u‖H−α‖v‖Hα

with D = Sd−1 we have

〈 f , g〉k =
∫∫

D×D
f (x)k(x, y)g(y) dx dy ≤ ‖ f‖H−α

∥∥∥∥
∫

D
k(·, y)g(y)

∥∥∥∥
Hα

,

so that it remains to estimate the last term. Plugging in definition (7.6) of the Sobolev
norm, we obtain

∥∥∥∥
∫

D
k(·, y)g(y)

∥∥∥∥
2

Hα

=
∫

D

∫ π

0

∣∣∣∣
(

Ax
t − I

) (∫

D
k(·, y)g(y) dy

)
(x)

∣∣∣∣
2

t−2α−1 dt dx,

where Ax
t is the average in (7.6) applied to the x variable only and I the identity. Swapping

the inner integral with the one inside the definition of Ax
t , we estimate

∥∥∥∥
∫

D
k(·, y)g(y)

∥∥∥∥
2

Hα

=
∫

D

∫ π

0

∣∣∣∣
∫

D

[(
Ax

t − I
)(

k(·, y)
)
(x)
]
g(y) dy

∣∣∣∣
2

t−2α−1 dt dx,

≤
∫

D

∫ π

0

∥∥(Ax
t − I

)(
k(·, y)

)
(x)
∥∥2

Hβ‖g‖2
H−β t−2α−1 dt dx,

=
∫∫

D×D

∫∫ π

0

∣∣(A
y
s−I

)(
Ax

t−I
)
(k)(x, y)

∣∣2t−2α−1s−2β−1dst dxy‖g‖2
H−β .
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Plugging in the definition of the averages A
y
s and Ax

t , the integrand is estimated by the
mixed Hölder norm

∣∣(A
y
s − I

)(
Ax

t − I
)
(k)(x, y)

∣∣ = −
∫

C(y,s)
−
∫

C(x,t)
|k(τ, σ)− k(x, σ)− k(τ, y) + k(x, y)| dτσ

≤ −
∫

C(y,s)
−
∫

C(x,t)
|x− τ|α+ǫ|y− σ|β+ǫ‖k‖C0;α+ǫ,β+ǫ dτσ.

The difference |x − τ|, and likewise |y − σ|, is bounded by the angle of the cap C(x, t).
Indeed

|x− τ|2 = |x|2 + |τ|2 − 2 〈x, τ〉 = 2(1− 〈x, τ〉) ≤ 2(1− cos t) . t2

for t ≤ T for some T ≥ 0. Since for all other t the difference |x − τ| ≤ 2 is bounded, we
obtain

|x− τ| . min{t, T}, |y− σ| . min{s, T}.
It follows that

∣∣(A
y
s − I

)(
Ax

t − I
)
(k)(x, y)

∣∣ . min{t, T}α+ǫ min{s, T}β+ǫ‖k‖C0;α+ǫ,β+ǫ.

Putting all estimates together, we find that

〈 f , g〉k . ‖ f‖H−α‖g‖H−β‖k‖C0;α+ǫ,β+ǫ

×
[∫∫

D×D

∫∫ π

0

[
min{t, T}α+ǫ min{s, T}β+ǫ

]2
t−2α−1s−2β−1 dst dxy

] 1
2

.

Since the integral is bounded, we conclude that

〈 f , g〉k . ‖ f‖H−α‖g‖H−β‖k‖C0;α+ǫ,β+ǫ.

The proof is complete.

7.4.3 NTK on the sphere

This section fills in the proofs for Section 3. Recall that we denote the normal NTK used
in [9, 11, 22] by

Θ(x, y) = lim
width→∞

∑
ι∈I

∂θι
f L+1(x)∂θι

f L+1(y),

whereas the NTK Γ(x, y) used in this paper confines the sum to ι ∈ IL−1, i.e. the sec-
ond but last layer, see Section 3. We first show that the reproducing kernel Hilbert space
(RKHS) of the NTK is a Sobolev space.

Lemma 7.11. Let Θ(x, y) be the neural tangent kernel for a fully connected neural network on

the sphere S
d−1 with bias and ReLU activation. Then the corresponding RKHS HΘ is the Sobolev

space Hd/2(Sd−1) with equivalent norms

‖ · ‖HΘ
∼ ‖ · ‖

H
d
2

.



J. Mach. Learn., 3(2):107-175 171

Proof. By [11, Theorem 1] the RKHS HΘ is the same as the RKHS HLap of the Laplacian
kernel

k(x, y) = e−‖x−y‖.

An inspection of their proof reveals that these spaces have equivalent norms. By [22,
Theorem 2], the Laplace kernel has the same eigenfunctions as the NTK (both are spherical
harmonics) and eigenvalues

ℓ
−d . λℓ,j . ℓ

−d, ℓ ≥ ℓ0, j = 1, . . . , ν(ℓ)

for some ℓ0 ≥ 0, whereas the remaining eigenvalues are strictly positive. By rearranging
the constants, this implies

(ℓ+ 1)−d . λℓ,j . (ℓ+ 1)−d, ℓ ≥ 0, j = 1, . . . , ν(ℓ)

for all eigenvalues. With Mercer’s theorem and the definition (7.5) of Sobolev norms, we
conclude that

‖ f‖2
HΘ
∼ ‖ f‖2

Lap =
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

λ−1
ℓ,j | f̂ℓ,j|2 ∼

∞

∑
ℓ=0

ν(ℓ)

∑
j=1

(ℓ+ 1)d| f̂ℓ,j |2 = ‖ f‖2

H
d
2 (Sd−1)

.

The proof is complete.

Lemma 7.12. Let Θ(x, y) be the neural tangent kernel for a fully connected neural network on

the sphere Sd−1 with bias and ReLU activation. It’s eigenfunctions are spherical harmonics with
eigenvalues

(ℓ+ 1)−d . λℓ,j . (ℓ+ 1)−d, ℓ ≥ 0, j = 1, . . . , ν(ℓ).

Proof. This follows directly form the norm equivalence ‖ · ‖HΘ
∼ ‖ · ‖Hd/2 in Lemma 7.11

and in Mercer’s theorem representation of the RKHS

∞

∑
ℓ=0

ν(ℓ)

∑
j=1

λ−1
ℓ,j | f̂ℓ,j|2 = ‖ f‖2

HΘ
∼ ‖ f‖2

H
d
2 (Sd−1)

=
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

(ℓ+ 1)d| f̂ℓ,j|2,

choosing f = Y
j
ℓ

as a spherical harmonic.

With the knowledge of the full spectrum of the NTK, it is now straight forward to show
coercivity.

Lemma 7.13 (Lemma 3.2, Restated). Let Θ(x, y) be the neural tangent kernel for a fully con-

nected neural network with bias on the sphere S
d−1 with ReLU activation. Then for any α ∈ R,

〈 f , LΘ f 〉Hα(Sd−1) & ‖ f‖2

Hα− d
2 (Sd−1)

,

where LΘ is the integral operator with kernel Θ(x, y).

Proof. Plugging in

f =
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

f̂ℓjY
j
ℓ



J. Mach. Learn., 3(2):107-175 172

in eigenbasis, and using the estimate λℓj ∼ (ℓ + 1)−d of the eigenvalues in Lemma 7.12,
we have

〈 f , LΘ f 〉Hα(Sd−1) =
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

(ℓ+ 1)2α f̂ℓj L̂θ f
ℓj

=
∞

∑
ℓ=0

ν(ℓ)

∑
j=1

(ℓ+ 1)2αλℓj| f̂ℓj|2

= ‖ f‖2

Hα− d
2 (Sd−1)

.

The proof is complete.
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