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Abstract. This paper is devoted to the numerical resolution of McKean-Vlasov control problems via the class
of mean-field neural networks introduced in our companion paper [Pham and Warin, Neural Netw., 168,
2023] in order to learn the solution on the Wasserstein space. We propose several algorithms either based on
dynamic programming with control learning by policy or value iteration, or backward stochastic differential
equation SDE from stochastic maximum principle with global or local loss functions. Extensive numerical
results on different examples are presented to illustrate the accuracy of each of our eight algorithms. We
discuss and compare the pros and cons of all the tested methods.
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1 Introduction

This paper is concerned with the numerical resolution of McKean-Vlasov (MKV) control,
also called mean-field control (MFC) problems over finite horizon. The dynamics of the

controlled state process X = (Xt)t valued in R
d is driven by the mean-field SDE (stochastic

differential equation)

dXt = b(Xt, PXt
, αt)dt + σ(Xt , PXt

, αt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

where W is a d-dimensional Brownian motion on a filtered probability space (Ω,F , F =
(Ft)t, P), the initial distribution µ0 of X0 lies in P2(R

d), the Wasserstein space of square-
integrable probability measures, α ∈ A is a control process, i.e an F-progressively measur-

able process valued in A ⊂ R
m, and PXt

denotes the law of Xt, valued on P2(R
d), under

standard assumptions on the coefficients b, σ defined on R
d × P2(R

d) × A, and valued

respectively in R
d and R

d×d. The objective is to minimize over controls α ∈ A, a cost
functional of the form

J(α) = E

[

∫ T

0
f (Xt , PXt

, αt)dt + g(XT , PXT
)

]

→ v(µ0) = inf
α∈A

J(α), (1.1)
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where f is a running cost function on R
d × P2(R

d)× A, and g is a terminal cost function

on R
d ×P2(R

d).
The theory and applications of mean-field control problems that study models of large

population of interacting agents controlled by a social planner, have generated a vast lit-
erature in the last decade, and we refer to the monographs [4, 6, 7] for a comprehensive
treatment of this topic. As analytical solutions to MFC are rarely available, it is crucial to
design efficient numerical schemes for solving such problem, and the main challenging
issue is the infinite dimensional feature of MFC coming from the distribution law state
variable.

Following the tremendous impact of machine learning methods for solving high-dime-
nsional partial differential equations (PDEs) and control problems, see e.g. the survey pa-
pers [3, 16], and the link to the website deeppde.org, some recent works have proposed
deep learning schemes for MFC, based on neural network approximations of the feedback
control and/or the value function solution to the Hamilton-Jacobi-Bellman equation or
backward stochastic differential equations (BSDEs). In these articles, the authors consider
either approximate feedback controls by standard feedforward neural networks with in-

put the time and the state variable Xt in R
d by viewing the law of Xt as a deterministic

function of time (see [9,12,14,24,26,27]), or consider a particle approximation of the MFC
for reducing the problem to a finite-dimensional problem that is numerically solved by
means of symmetric neural networks, see [13]. However, the outputs obtained by these
deep learning schemes only provide an approximation of the solution for a given initial
distribution of the state process. Hence, for another distribution µ0 of the initial state,
these algorithms have to be run again.

In this paper, we aim to compute the minimal cost function v(µ0) for any µ0 ∈ P2(R
d),

and to find the optimal control, which can be searched w.l.o.g. in the class of feedback
controls, i.e. of the form αt = a(t, Xt, PXt

), 0 ≤ t ≤ T, for some measurable function a

on [0, T] ×R
d × P2(R

d). In other words, our goal is to learn the value function and the
optimal feedback control on the Wasserstein space. We shall rely on a new class of neural
networks, introduced in our companion paper [25], called mean-field neural networks
with input a probability measure in order to approximate mappings on the Wasserstein
space. We then develop several numerical schemes based either on dynamic programming
(DP) or stochastic maximum principle (SMP). We first propose, in the spirit of [17, 18]
a global learning of the feedback control approximated by a mean-field neural network.
In the DP approach, we then propose two algorithms inspired by [20]: The first one learns
the control by policy iteration while the second one learns sequentially the control and
the value function by value iteration. In the SMP approach, we exploit the backward SDE
characterization of the solution, and propose five different algorithms in line with recent
methods developed in the context of standard BSDE (see [11, 15, 21]) that we extend to
MKV BSDE with various choices of global or local loss functions to be minimized in the
training of mean-field neural networks. We then provide extensive numerical experiments
on three examples: a mean-field systemic risk model, a min/max linear quadratic model,
and the classical mean-variance problem. We compare and discuss the advantages and
drawbacks of all our algorithms.

http://deeppde.org/intro/

	Introduction

