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Abstract. This paper is devoted to the numerical resolution of McKean-Vlasov control problems via the class
of mean-field neural networks introduced in our companion paper [Pham and Warin, Neural Netw., 168,
2023] in order to learn the solution on the Wasserstein space. We propose several algorithms either based on
dynamic programming with control learning by policy or value iteration, or backward stochastic differential
equation SDE from stochastic maximum principle with global or local loss functions. Extensive numerical
results on different examples are presented to illustrate the accuracy of each of our eight algorithms. We
discuss and compare the pros and cons of all the tested methods.
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1 Introduction

This paper is concerned with the numerical resolution of McKean-Vlasov (MKV) control,
also called mean-field control (MFC) problems over finite horizon. The dynamics of the

controlled state process X = (Xt)t valued in R
d is driven by the mean-field SDE (stochastic

differential equation)

dXt = b(Xt, PXt
, αt)dt + σ(Xt , PXt

, αt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

where W is a d-dimensional Brownian motion on a filtered probability space (Ω,F , F =
(Ft)t, P), the initial distribution µ0 of X0 lies in P2(R

d), the Wasserstein space of square-
integrable probability measures, α ∈ A is a control process, i.e an F-progressively measur-

able process valued in A ⊂ R
m, and PXt

denotes the law of Xt, valued on P2(R
d), under

standard assumptions on the coefficients b, σ defined on R
d × P2(R

d) × A, and valued

respectively in R
d and R

d×d. The objective is to minimize over controls α ∈ A, a cost
functional of the form

J(α) = E

[

∫ T

0
f (Xt , PXt

, αt)dt + g(XT , PXT
)

]

→ v(µ0) = inf
α∈A

J(α), (1.1)
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where f is a running cost function on R
d × P2(R

d)× A, and g is a terminal cost function

on R
d ×P2(R

d).
The theory and applications of mean-field control problems that study models of large

population of interacting agents controlled by a social planner, have generated a vast lit-
erature in the last decade, and we refer to the monographs [4, 6, 7] for a comprehensive
treatment of this topic. As analytical solutions to MFC are rarely available, it is crucial to
design efficient numerical schemes for solving such problem, and the main challenging
issue is the infinite dimensional feature of MFC coming from the distribution law state
variable.

Following the tremendous impact of machine learning methods for solving high-dime-
nsional partial differential equations (PDEs) and control problems, see e.g. the survey pa-
pers [3, 16], and the link to the website deeppde.org, some recent works have proposed
deep learning schemes for MFC, based on neural network approximations of the feedback
control and/or the value function solution to the Hamilton-Jacobi-Bellman equation or
backward stochastic differential equations (BSDEs). In these articles, the authors consider
either approximate feedback controls by standard feedforward neural networks with in-

put the time and the state variable Xt in R
d by viewing the law of Xt as a deterministic

function of time (see [9,12,14,24,26,27]), or consider a particle approximation of the MFC
for reducing the problem to a finite-dimensional problem that is numerically solved by
means of symmetric neural networks, see [13]. However, the outputs obtained by these
deep learning schemes only provide an approximation of the solution for a given initial
distribution of the state process. Hence, for another distribution µ0 of the initial state,
these algorithms have to be run again.

In this paper, we aim to compute the minimal cost function v(µ0) for any µ0 ∈ P2(R
d),

and to find the optimal control, which can be searched w.l.o.g. in the class of feedback
controls, i.e. of the form αt = a(t, Xt, PXt

), 0 ≤ t ≤ T, for some measurable function a

on [0, T] ×R
d × P2(R

d). In other words, our goal is to learn the value function and the
optimal feedback control on the Wasserstein space. We shall rely on a new class of neural
networks, introduced in our companion paper [25], called mean-field neural networks
with input a probability measure in order to approximate mappings on the Wasserstein
space. We then develop several numerical schemes based either on dynamic programming
(DP) or stochastic maximum principle (SMP). We first propose, in the spirit of [17, 18]
a global learning of the feedback control approximated by a mean-field neural network.
In the DP approach, we then propose two algorithms inspired by [20]: The first one learns
the control by policy iteration while the second one learns sequentially the control and
the value function by value iteration. In the SMP approach, we exploit the backward SDE
characterization of the solution, and propose five different algorithms in line with recent
methods developed in the context of standard BSDE (see [11, 15, 21]) that we extend to
MKV BSDE with various choices of global or local loss functions to be minimized in the
training of mean-field neural networks. We then provide extensive numerical experiments
on three examples: a mean-field systemic risk model, a min/max linear quadratic model,
and the classical mean-variance problem. We compare and discuss the advantages and
drawbacks of all our algorithms.

http://deeppde.org/intro/
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The rest of the paper is organized as follows. We recall in Section 2 some key results
about the characterization of MKV control problems by DP or SMP approach, and intro-
duce the class of mean-field neural networks. Section 3 presents three algorithms based
on DP, while Section 4 develops five algorithms based on the BSDE representation of the
solution to MKV. The performances of all our algorithms are illustrated via three exam-
ples in Section 5. Finally, we give in Section 6 some concluding remarks about the pros
and cons of the different schemes.

2 Preliminaries

2.1 Characterization of McKean-Vlasov control

Solution to the MKV control problem (1.1) can be characterized by dynamic programming
(DP) or maximum principle methods (see [6] for a detailed treatment of this topic). We
recall the main results that will be used for designing our algorithms. In the DP approach,
one considers the dynamic version of problem (1.1) by defining the decoupled value func-

tion V defined on [0, T]×R
d ×P2(R

d), which satisfies the backward recursion

V(t, Xt , PXt
) = inf

α∈A
E

[

∫ t+h

t
f (Xs , PXs , αs)ds + V(t + h, Xt+h, PXt+h

)
∣

∣Ft

]

for any t ∈ [0, T), h ∈ (0, T − t], and starting from the terminal condition V(T, x, µ) =
g(x, µ) for (x, µ) ∈ [0, T]× P2(R

d), so that v(µ0) = E[V(0, X0, µ0)]. By sending h to zero,
we derive the master Bellman equation for the value function (see [6, Section 6.5.2])

∂tV(t, x, µ) + b
(

x, µ, â
(

x, µ,U (t, x, µ), ∂xU (t, x, µ)
))

· ∂xV(t, x, µ)

+
1

2
σσ⊺(x, µ, â

(

x, µ,U (t, x, µ), ∂xU (t, x, µ)
)

· ∂2
xxV(t, x, µ)

+ Eξ∼µ

[

b
(

ξ, µ, â
(

ξ, µ,U (t, ξ, µ), ∂xU (t, ξ, µ)
))

· ∂µV(t, x, µ)(ξ)

+
1

2
σσ⊺(ξ, µ, â

(

ξ, µ,U (t, ξ, µ), ∂xU (t, ξ, µ)
)

· ∂x′∂µV(t, x, µ)(ξ)

]

+ f
(

x, µ, â
(

x, µ,U (t, x, µ), ∂xU (t, x, µ)
))

= 0

for (t, x, µ) ∈ [0, T)×R
d×P2(R

d). Here · is the inner product in Euclidian spaces, ⊺ is the

transpose operator for a matrix, x′ ∈ R
d 7→ ∂µV(t, x, µ)(x′) ∈ R

d is the Lions derivative

on P2(R
d) (see [6]), the notation Eξ∼µ[.] means that the expectation is taken with respect

to the random variable ξ distributed according to the law µ,

U (t, x, µ) = ∂xV(t, x, µ) + Eξ∼µ[∂µV(t, ξ, µ)(x)] = ∂µv(t, µ)(x), (2.1)

v(t, µ) := Eξ∼µ[V(t, ξ, µ)],
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and it is assumed that for any (x, µ, p, M) ∈ R
d×P2(R

d)×R
d ×R

d×d, there exists a min-
imizer

â(x, µ, p, M) ∈ argmin
a∈A

H(x, µ, p, M, a),

H(x, µ, p, M, a) := b(x, µ, a) · p +
1

2
σσ⊺(x, µ, a) ·M + f (x, µ, a),

which is Lipschitz in all its variables, so that we get an optimal feedback control given by

a
⋆(t, x, µ) = â

(

x, µ,U (t, x, µ), ∂xU (t, x, µ)
)

, (t, x, µ) ∈ [0, T]×R
d ×P2(R

d). (2.2)

In the case where the diffusion coefficient σ(x, µ) does not depend on the control vari-
able a, and so â(x, µ, p) does not depend on the variable M, we have a probabilistic char-
acterization of the solution in terms of forward-backward SDE of MKV type: By setting

Yt = V(t, Xt , PXt
), Zt = σ(Xt , PXt

)⊺∂xV(t, Xt , PXt
), 0 ≤ t ≤ T,

it follows from Itô’s formula and master Bellman equation that (X, Y, Z) satisfies the
forward-backward SDE



















dXt = b
(

Xt, PXt
, â(Xt, PXt

, Pt)
)

dt

+σ(Xt , PXt
)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

dYt = − f
(

Xt, PXt
, â(Xt, PXt

, Pt)
)

dt

+Zt · dWt, 0 ≤ t ≤ T, YT = g(XT, PXT
),

(2.3)

where the pair

(Pt, Mt)t =
(

U (t, Xt , PXt
), ∂xU (t, Xt , PXt

)σ(Xt , PXt
)
)

t

of adjoint processes, valued in R
d ×R

d×d, satisfies from the Pontryagin maximum princi-
ple the backward SDE














dPt = −∂x H
(

Xt, PXt
, Pt, Mt, â(Xt, PXt

, Pt)
)

dt

−Ẽ
[

∂µH
(

X̃t, PXt
, P̃t, M̃t, â(X̃t, PXt

, P̃t)
)

(Xt)
]

dt + MtdWt, 0 ≤ t ≤ T,

PT = ∂xg(XT , PXT
) + Ẽ

[

∂µg(X̃T , PXT
)(XT)

]

,

(2.4)

where (X̃, P̃, M̃) are independent copies of (X, P, M) on (Ω̃, F̃ , P̃). Under the assumption

that (x, µ) ∈ R
d × P2(R

d) 7→ g(x, µ) is convex, (x, µ, a) ∈ R
d × P2(R

d) × A (with A
convex set) 7→ H(x, µ, p, M, a) is convex for any (p, M), together with additional regularity
conditions on the coefficients b, σ, f , g, it is known from [5] that the solution to the adjoint
BSDE (2.4) yields an optimal control given by

α∗t = a
⋆(t, Xt , PXt

) = â(Xt, PXt
, Pt), 0 ≤ t ≤ T.

We are then led to consider the generic form of MKV forward-backward (X,Y ,Z)














dXt = B(Xt, PXt
,Yt)dt + σ(Xt , PXt

)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

dYt = Ẽ
[

H(Xt, PXt
,Yt,Zt, X̃t, Ỹt, Z̃t)

]

dt

+ZtdWt, 0 ≤ t ≤ T, YT = G(XT , PXT
).

(2.5)
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2.2 Mean-field neural networks

The solution to MKV control problem, i.e. the value function and optimal feedback con-
trol, are mappings of the state process and its probability distribution. In order to ap-
proximate such mappings, we shall rely on mean-field neural networks introduced in our
companion paper [25]. Those are mappings

N : µ ∈ P2(R
d) 7→ N (µ)(·) : R

d → R
p with quadratic growth condition,

in one of the following forms:

(i) Bin density: N (µ)(x) = Φ(x, pµ), for x ∈ R
d, µ ∈ D2(R

d) the subset of proba-

bility measures µ in P2(R
d), which admit density functions pµ with respect to the

Lebesgue measure λd on R
d. Here, Φ is a standard feedforward neural network

from R
d ×R

K into R
p, and pµ = (p

µ
k )k∈J1,KK is the bin weight of the discrete density

approximation of pµ on a fixed bounded rectangular domain K of R
d divided into K

bins: ∪K
k=1Bin(k) = K, of center xk, with same area size h = λd(K)/K, hence given

by (see Fig. 2.1 in the case of one dimensional Gaussian distribution for µ)

p
µ
k =

pµ(xk)

∑
K
k=1 pµ(xk)h

, k = 1, . . . , K.

(ii) Cylindrical: N (µ)(·) = Ψ(·,< ϕ, µ >), where Ψ is a feedforward network function

(outer neural network) from R
d×R

q into R
p, and ϕ is another feedforward network

function (inner neural network) from R
d into R

q (called latent space). Here we de-
note < ϕ, µ >:=

∫

ϕ(x)µ(dx).

The relevance of mean-field neural networks is theoretically justified in [25] by uni-
versal approximation theorems, and it has been also shown how they can be trained ac-
curately from samples of probability measures µ = LD(p) with discrete density of bin

weight p = (pk)k∈J1,KK drawn randomly on

DK =

{

p = (pk)k∈J1,KK ∈ R
K
+ :

K

∑
k=1

pk h = 1

}

,

Figure 2.1: Bin approximation of a Gaussian distribution.
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and simulations of random variables X ∼ µ by inverse transform. Notice that for µ =
LD(p), we have pµ = p, and so the bin density network at such µ is equal to N (µ)(.) =
Φ(., p). On the other hand, for any cylindrical function F of the measure of the form

F(µ) = Ψ(< ϕ, µ >), we can compute it approximately from samples X(n), n = 1, . . . , N,
of µ by

F(µ) ≃ Ψ

(

1

N

N

∑
n=1

ϕ(X(n))

)

.

This is the case in particular for cylindrical neural network.
As described in [25], exploring the space of probability measures is crucial for both

neural networks. In both cases, we employ the bins method to generate samples of prob-
ability measures for training mean-field neural networks. The algorithm used to generate
these measures is outlined in [25] and is currently limited to dimension one. Consequently,
all numerical tests conducted in the article are confined to dimension one. However, it is
possible to handle cases in dimension two by employing a different algorithm proposed
in [30]. In all subsequent algorithms, the proper selection of the domainK is crucial, partic-
ularly for the bins method. When the support of the distribution is unknown, an iterative
procedure becomes necessary. Two algorithms can be implemented as follows:

1. First algorithm: (i) Initially, make an initial guess of the support. (ii) Once the reso-
lution is obtained, verify that the generated distribution’s support is primarily con-
tained within K, sufficiently far from its boundary. (iii) If the support is not mainly
within K, adapt the size and center of K accordingly.

2. Second algorithm: (i) Use a very large K during the first iteration to locate the do-
main of importance, employing a coarse resolution. (ii) In the subsequent calculation,
reduce the size of K to achieve an accurate resolution.

3 Dynamic programming-based algorithms

We consider a time discretization of the MKV control problem by fixing a time grid T =
{ti = i∆t : i = 0, . . . , NT}with ∆t = T/NT , and introducing the corresponding mean-field

Markov decision process: Minimize over feedback controls a on T ×R
d×P2(R

d) the cost
functional

JNT
(a) = E

[

NT−1

∑
i=0

f
(

Xi, µi, a(ti, Xi, µi)
)

∆t + g(XNT
, µNT

)

]

,

where

Xi+1 = Xi + b
(

Xi, µi, a(ti, Xi, µi)
)

∆t + σ
(

Xi, µi, a(ti, Xi, µi)
)

∆Wi,

=: F∆t

(

Xi, µi, a(ti, Xi, µi), ∆Wi

)

, i = 0, . . . , NT − 1, X0 ∼ µ0

with ∆Wi := Wti+1
−Wti

, and µi = PXi
denotes the law of Xi.

We present two classes of algorithms. The first one is learning the control by a sin-
gle optimization but allows us to compute the solution of the problem (1.1) and therefore
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the solution of the corresponding master Bellman equation only at time t = 0 for all dis-
tributions µ0. The second class with two other algorithms solves NT local optimization
problems, and allows us to compute the master equation at all dates for all distributions.

3.1 Global learning on control

In the spirit of the method introduced in [17,18], which does not actually rely on dynamic
programming, we replace feedback controls by time-dependent mean-field neural net-

works N (t, µ)(x) valued in A ⊂ R
m with input t ∈ [0, T], µ ∈ P2(R

d), and x ∈ R
d, and

minimize over the parameters θ of this mean-field neural networkN = Nθ the global cost
function

J(θ) = E

[

NT−1

∑
i=0

f
(

Xi, µi,Nθ(ti, µi)(Xi)
)

∆t + g(XNT
, µNT

)

]

with
Xi+1 = F∆t

(

Xi, µi,Nθ(ti, µi)(Xi), ∆Wi

)

, i = 0, . . . , NT − 1, X0 ∼ µ0.

In practice, for i = 1, . . . , NT , µi has to be estimated/approximated from samples of Xi,

and this is done as follows. We use a training batch of M probability measures µ
(m)
0 =

LD(p(m)) in D2(R
d) from samples p(m) = (p

(m)
k )k∈J1,KK, m = 1, . . . , M, in DK. Then, for

each m, we sample X
(m),(n)
0 , n = 1, . . . , N, from µ

(m)
0 , and for i = 0, . . . , NT − 1, X

(m),(n)
i+1 ,

n = 1, . . . , N are sampled as

X
(m),(n)
i+1 = F∆t

(

X
(m),(n)
i , µ̂

(m)
i ,Nθ

(

ti, µ̂
(m)
i

)(

X
(m),(n)
i

)

, ∆W
(m),(n)
i

)

with µ̂
(m)
i = LD(p̂

(m)
i ), p̂

(m)
0 = p(m), and p̂

(m)
i = ( p̂

(m)
i,k )k∈J1,KK are the estimated density

weights in DK of X
(m),(n)
i , i = 1, . . . , NT (truncated on K), namely

p̂
(m)
i,k =

#
{

n ∈ J1, NK : ProjK
(

X
(m),(n)
i

)

∈ Bin(k)
}

Nh
, k = 1, . . . , K,

where ProjK(.) is the projection on K. The cost function is then approximated by

JM,N(θ) =
1

MN

M

∑
m=1

[

N

∑
n=1

NT−1

∑
i=0

f
(

X
(m),(n)
i , µ̂

(m)
i ,Nθ

(

ti, µ̂
(m)
i

)(

X
(m),(n)
i

))

∆t

+ g
(

X
(m),(n)
NT

, µ̂
(m)
NT

)

]

.

The pseudo-code using a gradient descent method is described in Algorithm 1. The
global algorithms that directly minimize the objective function have demonstrated effec-
tiveness in practice, even without having a theoretical convergence proof. The output
of this global algorithm is an approximation of the optimal feedback control at initial
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Algorithm 1 Global Learning on the Control.

Input data: A time-dependent mean-field neural networkNθ(t, µ)(x).
Initialization: Learning rate γ and parameters θ.
for each epoch do

Generate a batch of M initial distributions µ
(m)
0 , m = 1, . . . , M .

for m = 1, . . . , M do

Generate Brownian increments ∆W
(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N .

Compute sample trajectories X
(m),(n)
0 , X

(m),(n)
i , n = 1, . . . , N, and estimate µ̂

(m)
i ,

i = 1, . . . , NT .

Compute the batch cost JM,N(θ) and its gradient∇θJM,N(θ) .
Update θ ← θ − γ∇θJM,N(θ) .

Return: The set of optimized parameters θ∗.

time t0 = 0 by a mean-field neural network Nθ∗(t0, .), and yields an approximation of
the optimal control at other times ti, i = 1, . . . , NT − 1, by mean-field neural networks
Nθ∗(ti, µi)(Xi) along the law µi, and the state Xi explored during the learning algorithm.
The value function can then be estimated at initial time t0 by regression as follows: We ap-
proximate the initial value function by a mean-field neural network ϑη(µ)(x) valued in R,
and minimize over the parameters η of this neural network the quadratic loss function

E

∣

∣

∣

∣

∣

NT−1

∑
i=0

f
(

Xi, µi,Nθ∗(ti, µi)(Xi)
)

∆t + g(XNT
, µNT

)− ϑη(µ0)(X0)

∣

∣

∣

∣

∣

2

,

where

Xi+1 = F∆t

(

Xi, µi,Nθ∗(ti, µi)(Xi), ∆Wi

)

, i = 0, . . . , NT − 1, X0 ∼ µ0.

When using the global algorithm and the cylinder network, there is no need to estimate
the support of the distribution. The parameter K is solely used to generate probability
distributions at time 0, and its selection is based on ensuring that the initial distribution of
X0 primarily concentrates its mass within K. On the other hand, when employing the bin
method, it is necessary to monitor the generated distribution and verify that its support is
predominantly contained within K. If this is not the case, the size of K should be adjusted
using the procedure suggested in Section 2.2.

3.2 Control learning by policy iteration

Our next algorithm is inspired by the method in [20], which is a combination of the
global algorithm on control and dynamic programming. We replace at any time ti, i =
0, . . . , NT − 1, feedback controls by mean-field neural networks Nθi

with parameter θi,
and proceed by backward induction for computing approximate optimal controls: For
i = NT − 1, . . . , 0, keep track of the approximate optimal feedback controls Nθ∗j

, j =

i + 1, . . . , NT − 1, and minimize over θi the cost function
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Ji(θi) = E

[

f
(

Xi, µi,Nθi
(µi)(Xi)

)

∆t +
NT−1

∑
j=i+1

f
(

Xj, µj,Nθ∗j
(µj)(Xj)

)

∆t + g(XNT
, µNT

)

]

(with the convention that the above sum over j is empty when i = NT − 1), where

{

Xi+1 = F∆t

(

Xi, µi,Nθi
(µi)(Xi), ∆Wi

)

, Xi ∼ µi,

Xj+1 = F∆t

(

Xj, µj,Nθ∗j
(µj)(Xj), ∆Wj

)

, j = i + 1, . . . , NT − 1.
(3.1)

In the practical implementation, the cost function Ji(.) is approximately computed from

a training of M probability measures µ
(m)
i = LD(p

(m)
i ) in D2(R

d) with samples p
(m)
i =

(p
(m)
i,k )k∈J1,KK, m = 1, . . . , M, in DK. For each batch m, one then computes N samples

X
(m),(n)
i ∼ µ

(m)
i , X

(m),(n)
j , j = i + 1, . . . , NT − 1, n = 1, . . . , N, according to (3.1) with es-

timated probability measures µ̂
(m)
j = LD(p̂

(m)
j ), as in Section 3.1, and thus approximate

the local cost function by

Ji
M,N(θi) =

1

MN

M

∑
m=1

N

∑
n=1

[

f
(

X
(m),(n)
i , µ

(m)
i ,Nθi

(

µ
(m)
i

)(

X
(m),(n)
i

))

∆t

+
NT−1

∑
j=i+1

f
(

X
(m),(n)
j , µ̂

(m)
j ,Nθ∗j

(

µ̂
(m)
j

)(

X
(m),(n)
j

))

∆t

+ g
(

X
(m),(n)
NT

, µ̂
(m)
NT

)

]

.

The pseudo-code is described in Algorithm 2. The output of this algorithm is an ap-
proximation of the optimal feedback control at any time ti by a mean-field neural network
Nθ∗i

, i = 0, . . . , NT − 1. The value function can then be estimated at any time ti by re-

gression as follows: We approximate the value function at time ti by a mean-field neural
network ϑηi

(µ)(x) valued in R, and minimize over the parameters ηi of this neural net-
work the quadratic loss function

E

∣

∣

∣

∣

∣

NT−1

∑
j=i

f
(

Xj, µj,Nθ∗j
(µj)(Xj)

)

∆t + g(XNT
, µNT

)− ϑηi
(µi)(Xi)

∣

∣

∣

∣

∣

2

, (3.2)

where
Xj+1 = F∆t

(

Xj, µj,Nθ∗j
(µj)(Xj), ∆Wj

)

, j = i, . . . , NT − 1, Xi ∼ µi.

In a backward algorithm, having a good estimate of the support of the distribution being
tested is crucial at each time step i. This estimate helps in efficiently sampling the distri-
bution in areas of interest. If the support is unknown, an iterative procedure, such as the
one proposed in Section 2.2, needs to be implemented to gradually refine the estimation
of the support.
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Algorithm 2 Learning by Policy Iteration.

Input data: Mean-field neural networksNθi
.

for i = NT − 1, . . . , 0 do
Initialization: Learning rate γ and parameters θi.
for each epoch do

Generate a batch of M distributions µ
(m)
i , m = 1, . . . , M.

for m = 1, . . . , M do

Generate Brownian increments ∆W
(m),(n)
k , k = i, . . . , NT − 1, n = 1, . . . , N.

Compute sample trajectories X
(m),(n)
i , X

(m),(n)
j , n = 1, . . . , N, and estimate µ̂

(m)
j ,

j = i + 1, . . . , NT .

Compute the batch cost Ji
M,N(θi) and its gradient∇θJi

M,N(θi).

Update θi ← θi − γ∇θJi
M,N(θi).

θ∗i = θi.

Return: Optimized parameters θ∗i , i = 0, . . . , NT − 1.

3.3 Control learning by value iteration

The two previous algorithms provide low bias estimates of the learnt controls, but in gen-
eral high-variance estimate due to this cumulated sum over the cost functions. Moreover,
these algorithms are very memory demanding as, at each epoch, all the N trajectories
for the M distributions have to be generated for the O(NT) time values and stored. To
circumvent this possible variance issue, we propose an alternate algorithm of actor-critic
type, similarly as in [20] (called there hybrid algorithm), where the feedback control and
value function are learnt sequentially. We are given a family of mean-field neural net-
worksNθi

and ϑηi
, i = 0, . . . , NT − 1, for the approximation of the feedback control (actor)

and value function (critic). We proceed by backward induction as follows: Starting from
ϑ∗NT

(µ)(x) = g(x, µ), we minimize over θi, for i = NT − 1, . . . , 0, the cost function

Ji(θi) = E
[

f
(

Xi, µi,Nθi
(µi)(Xi)

)

∆t + ϑ∗i+1(µi+1)(Xi+1)
]

,

where
Xi+1 = F∆t

(

Xi, µi,Nθ(ti, µi)(Xi), ∆Wi

)

, Xi ∼ µi, (3.3)

update θ∗i as the resulting optimal parameter, then minimize over ηi the quadratic loss
function

Li(ηi) = E
∣

∣ f
(

Xi, µi,Nθ∗i
(µi)(Xi)

)

∆t + ϑ∗i+1(µi+1)(Xi+1)− ϑηi
(µi)(Xi)

∣

∣

2
,

update η∗i as the resulting optimal parameter, and set ϑ∗i = ϑη∗i
. Again, in the practical

implementation, we use a training of M probability measures µ
(m)
i = LD(p

(m)
i ) inD2(R

d)

with samples p
(m)
i = (p

(m)
i,k )k∈J1,KK, m = 1, . . . , M, in DK. For each batch m, one then

computes N samples X
(m),(n)
i ∼ µ

(m)
i , X

(m),(n)
i+1 according to (3.3) with estimated probability
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measure µ̂
(m)
i+1 = LD(p̂

(m)
i+1), as in Section 3.1, and approximate the function Ji by

Ji
M,N(θi) =

1

MN

M

∑
m=1

N

∑
n=1

[

f
(

X
(m),(n)
i , µ

(m)
i ,Nθi

(

µ
(m)
i

)(

X
(m),(n)
i

)

)

∆t+ϑ∗i+1

(

µ
(m)
i+1

)(

X
(m),(n)
i+1

)

]

,

while similarly the second loss function Li is approximated by

Li
M,N(ηi) =

1

MN

M

∑
m=1

N

∑
n=1

∣

∣

∣
f
(

X
(m),(n)
i , µ

(m)
i ,Nθ∗i

(

µ
(m)
i

)(

X
(m),(n)
i

)

)

∆t

+ ϑ∗i+1

(

µ
(m)
i+1

)(

X
(m),(n)
i+1

)

− ϑηi

(

µ
(m)
i

)(

X
(m),(n)
i

)

∣

∣

∣

2
.

The pseudo-code is described in Algorithm 3.

Algorithm 3 Actor/Critic Algorithm: Learning by Value Iteration.

Input data: Mean-field neural networksNθi
, ϑηi

, i = 0, . . . , NT − 1.
Initialization: ϑ∗NT

(µ)(x) = g(x, µ).

for i = NT − 1, . . . , 0 do

Initialization: Learning rates γC, γV and parameters θi, ηi.
for each epoch do

Generate a batch of M distributions µ
(m)
i , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
i , n = 1, . . . , N.

Compute samples X
(m),(n)
i , X

(m),(n)
i+1 , n = 1, . . . , N, and estimate µ̂

(m)
i+1.

Compute the batch cost Ji
M,N(θi) and its gradient∇θJi

M,N(θi).

Update θi ← θi − γ∇θJi
M,N(θi).

Store optimized parameter θ∗i .
for each epoch do

Generate a batch of M distributions µ
(m)
i , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
i , n = 1, . . . , N.

Compute samples X
(m),(n)
i , X

(m),(n)
i+1 , n = 1, . . . , N, and estimate µ̂

(m)
i+1.

Compute the batch cost Li
M,N(ηi) and its gradient∇η Li

M,N(ηi).

Update ηi ← ηi − γ∇η Li
M,N(ηi).

ϑ∗i = ϑη∗i
.

Return: The optimized parameters θ∗i , η∗i , i = 0, . . . , NT − 1.

The output of this algorithm is an approximation of the optimal feedback control and
value function at any time ti by mean-field neural networksNθ∗i

, and ϑη∗i
, i = 0, . . . , NT− 1.
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Since the resolution is performed in a backward manner, when the support of the distri-
bution is unknown, it becomes necessary to employ an iterative algorithm, as described
in Section 2.2, to explore and estimate the distributions of interest.

4 Backward SDE-based algorithms

We start from the time discretization of the MKV forward-backward SDE (2.5) that char-
acterizes the solution to the MKV control problem














Xi+1 = Xi + B(Xi, µi,Yi)∆t + σ(Xi, µi)∆Wi, i = 0, . . . , NT − 1, X0 ∼ µ0,

Yi+1 = Yi + Ẽ
[

H(Xi, µi,Yi,Zi, X̃i, Ỹi, Z̃i)
]

∆t

+Zi∆Wi, i = 0, . . . , NT − 1, YNT
=G(XNT

, µNT
).

This system of equations corresponds to the resolution of the system of Eqs. (2.3), (2.4).
Note that in fact, (Xt, Pt) is independent of Yt. Then the resolution is achieved by calcu-
lating the optimal control solving (Xt, Pt) for t ≤ T. The estimation of Yt is achieved by
using the optimal control with a simple forward simulation and by taking the expectation
of Yt in Eq. (2.3):

Yt = E

[

∫ T

t
f
(

Xs, PXs , â(Xs, PXs , Ps)
)

ds + g(XT , PXT
)
∣

∣Ft

]

.

4.1 Local algorithms

We adapt the deep backward scheme in [21] to our context. We are given a family of
mean-field neural networks Yθi

(µ)(x),Zθi
(µ)(x), i = 0, . . . , NT − 1 (by misuse of notation,

we also denote by Y and Z the neural networks for the approximation of the pair com-
ponent of the MKV BSDE), and proceed by backward induction as follows: Starting from
Y∗NT

(µ)(x) = G(x, µ), we minimize over θi, for i = NT − 1, . . . , 0, the loss function

Li(θi) = E

∣

∣

∣
Y∗i+1(µi+1)(Xi+1)−Yθi

(µi)(Xi)−Zθi
(µi)(Xi)∆Wi

− Ẽ
[

H
(

Xi, µi,Yθi
(µi)(Xi),Zθi

(µi)(Xi), X̃i,Yθi
(µi)(X̃i),Zθi

(µi)(X̃i)
)]

∆t
∣

∣

∣

2
,

where
Xi+1 = Xi + B

(

Xi, µi,Yθi
(µi)(Xi)

)

∆t + σ(Xi, µi)∆Wi, Xi ∼ µi, (4.1)

update θ∗i as the resulting optimal parameter, and set Y∗i = Yθ∗i
. In the practical imple-

mentation, we use a training of M probability measures µ
(m)
i = LD(p

(m)
i ) in D2(R

d) with

samples p
(m)
i = (p

(m)
i,k )k∈J1,KK, m = 1, . . . , M, in DK. For each batch m, one then computes

N independent samples X
(m),(n)
i , X̃

(m),(n)
i ∼ µ

(m)
i , n = 1, . . . , N, X

(m),(n)
i+1 according to (4.1)

with estimated probability measure µ̂
(m)
i+1 as in Section 3.1, and approximate the loss func-

tion by
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Li
M,N(θi) =

1

MN

M

∑
m=1

N

∑
n=1

∣

∣

∣
Y∗i+1

(

µ̂
(m)
i+1

)(

X
(m),(n)
i+1

)

−Yθi

(

µ
(m)
i

)(

X
(m),(n)
i

)

−Zθi

(

µ
(m)
i

)(

X
(m),(n)
i

)

∆Wi

−∆t

N

N

∑
n′=1

H
(

X
(m),(n)
i , µ

(m)
i ,Yθi

(

µ
(m)
i

)(

X
(m),(n)
i

)

,

Zθi

(

µ
(m)
i

)(

X
(m),(n)
i

)

, X̃
(m),(n′)
i ,Yθi

(

µ
(m)
i

)(

X̃
(m),(n′)
i

)

,

Zθi

(

µ
(m)
i

)(

X̃
(m),(n′)
i

)

)
∣

∣

∣

2
.

The pseudo-code is described in Algorithm 4. It is in the spirit of the actor/critic algo-
rithm 3, but now Y and Z are learnt simultaneously.

Algorithm 4 Deep Backward Algorithm.

Input data: Mean-field neural networks Yθi
,Zθi

.
Initialization: Y∗NT

(µ)(x) = G(x, µ).

for i = NT − 1, . . . , 0 do
Initialization: Learning rate γ, and parameter θi.
for each epoch do

Generate a batch of M distributions µ
(m)
i , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
i , n = 1, . . . , N.

Compute samples X
(m),(n)
i , X̃

(m),(n)
i , X

(m),(n)
i+1 , n = 1, . . . , N, and estimate µ̂

(m)
i+1.

Compute the batch loss Li
M,N(θi) and its gradient∇θ Li

M,N(θi).

Update θi ← θi − γ∇θ Li
M,N(θi).

Y∗i = Yθ∗i
.

Return: The set of optimized parameters θ∗i , i = 0, . . . , NT − 1.

We also propose a multi-step version of the above algorithm following the idea in [15],
and in the spirit of the policy iteration in Section 3.2. We proceed by backward induction
for i = NT − 1, . . . , 0, by keeping track of the approximate optimal mean-field neural
networks Y∗j ,Z∗j , j = i + 1, . . . , NT − 1, and minimize over θi the loss function

L̃i(θi) = E

∣

∣

∣

∣

∣

G(XNT
, µNT

)−
NT−1

∑
j=i+1

Z∗j (µj)(Xj)∆Wj −Zθi
(µi)(Xi)∆Wi −Yθi

(µi)(Xi)

−
NT−1

∑
j=i+1

Ẽ
[

H
(

Xj, µj,Y∗j (µj)(Xj),Z∗j (µj)(Xj), X̃j,Y∗j (µj)(X̃j),Z∗j (µj)(X̃j)
)]

∆t

− Ẽ
[

H
(

Xi, µi,Yθi
(µi)(Xi),Zθi

(µi)(Xi), X̃i,Yθi
(µi)(X̃i),Zθi

(µi)(X̃i)
)]

∆t

∣

∣

∣

∣

∣

2

,
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where






Xi+1 = Xi + B
(

Xi, µi,Yθi
(µi)(Xi)

)

∆t + σ(Xi, µi)∆Wi, Xi ∼ µi,

Xj+1 = Xj + B
(

Xj, µj,Y∗j (µj)(Xj)
)

∆t + σ(Xj , µj)∆Wj, j = i + 1, . . . , NT − 1.
(4.2)

In the practical implementation, we use a training of M probability measures µ
(m)
i , m =

1, . . . , M, and for each batch m, one then computes N samples X
(m),(n)
i , X̃

(m),(n)
i ∼ µ

(m)
i ,

X
(m),(n)
j , X̃

(m),(n)
j , j = i + 1, . . . , NT − 1, according to (4.2) with estimated probability mea-

sures µ̂
(m)
j = LD(p̂

(m)
j ), as in Section 3.1, and approximate the loss function by L̃i

M,N(θi),

i = 0, . . . , NT − 1.
The pseudo-code is described in Algorithm 5.

Algorithm 5 Deep Backward Multi-step Algorithm.

Input data: Mean-field neural networks Yθi
,Zθi

, and Brownian increments ∆Wi,
i = 0, . . . , NT − 1.
for i = NT − 1, . . . , 0 do

Initialization: Learning rate γ, and parameter θi.
for each epoch do

Generate a batch of M distributions µ
(m)
i , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
k , ∆̃W

(m),(n)
k , k = i, . . . , NT − 1,

n = 1, . . . , N.

Compute samples X
(m),(n)
i , X̃

(m),(n)
i , X

(m),(n)
j , X̃

(m),(n)
j , n = 1, . . . , N, and estimate

µ̂
(m)
j , j = i + 1, . . . , NT .

Compute the batch loss L̃i
M,N(θi) and its gradient∇θ L̃i

M,N(θi).

Update θi ← θi − γ∇θ L̃i
M,N(θi).

Y∗i = Yθ∗i
,Z∗i = Zθ∗i

.

Return: The set Y∗i = Yθ∗i
,Z∗i = Zθ∗i

, i = 0, . . . , NT − 1.

The output of these two Algorithms 4 and 5 yields in particular an approximation of the
function U in (2.1) by the mean-field neural network Y∗i at any time ti, hence an approx-
imation of the optimal feedback control defined in (2.2). We can then estimate the value
function at any time by regression similarly as in (3.2). Alternately, by considering the
value function in the BSDE as in (2.3), we can obtain an approximation of V via the mean-
field neural network Y∗i at any time ti. Once again, in a backward resolution process, if the
support of the distribution is unknown, it is necessary to employ an iterative algorithm,
as suggested in Section 2.2, to explore and identify the distributions of interest.
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4.2 Global algorithms

In the spirit of the deep BSDE method in [19], we consider a mean-field neural network
Uθ(µ)(x), and time dependent mean-field neural network Zθ(t, µ)(x), for approximat-
ing respectively the initial value of the Y component, and the Z component at any time
of the MKV BSDE. We then define by forward induction: Starting from X0 ∼ µ0,Y0 =
Uθ(µ0)(X0) for i = 0, . . . , NT − 1,

Xi+1 = Xi + B(Xi, µi,Yi)∆t + σ(Xi, µi)∆Wi,

Yi+1 = Yi + Ẽ
[

H
(

Xi, µi,Yi,Zθ(ti, µi)(Xi), X̃i, Ỹi,Zθ(ti, µi)(X̃i)
)]

∆t

+Zθ(ti, µi)(Xi)∆Wi, (4.3)

and minimize over θ the global loss function

L(θ) = E
∣

∣YNT
− G(XNT

, µNT
)
∣

∣

2
.

In practical implementation, we use a training sample of probability measures µ
(m)
0 , and

then for each m, N samples X
(m),(n)
0 ∼ µ

(m)
0 ,Y (m),(n)

0 = U0(µ
(m)
0 )(X

(m),(n)
0 ), n = 1, . . . , N,

and for i = 0, . . . , NT − 1,

X
(m),(n)
i+1 = X

(m),(n)
i + B

(

X
(m),(n)
i , µ̂

(m)
i ,Y (m),(n)

i

)

∆t + σ
(

X
(m),(n)
i , µ̂

(m),(n)
i

)

∆Wi,

Y (m),(n)
i+1 = Y (m),(n)

i +
∆t

N

N

∑
n′=1

H
(

X
(m),(n)
i , µ̂

(m)
i ,Y (m),(n)

i ,Zθ

(

ti, µ̂
(m)
i

)(

X
(m),(n)
i

)

,

X̃
(m),(n′)
i , Ỹ (m),(n′)

i ,Zθ

(

ti, µ̂
(m)
i

)(

X̃
(m),(n′)
i

)

)

+Zθ

(

ti, µ̂
(m)
i

)(

X
(m),(n)
i

)

∆Wi,

where X̃
(m),(n)
i , Ỹ (m),(n)

i are independent copies of X
(m),(n)
i ,Y (m),(n)

i , while µ̂
(m)
0 =µ

(m)
0 , µ̂

(m)
i ,

i = 1, . . . , NT , are estimated as in Section 3.1. The loss function is then approximated by

LM,N(θ) =
1

MN

M

∑
m=1

N

∑
n=1

∣

∣

∣
Y (m),(n)

NT
− G

(

X
(m),(n)
NT

, µ̂
(m)
NT

)

∣

∣

∣

2
.

The pseudo-code is described in Algorithm 6. The output of this global deep BSDE
algorithm is an approximation of the Y component of the BSDE at initial time t0 = 0 by
a mean-field neural network Uθ∗ , and yields approximation of the Z component at times
ti, i = 0, . . . , NT − 1, by mean-field neural networks Zθ∗(ti, µi)(Xi) along the law µi, and
state Xi explored during the learning algorithm. The value function can then be estimated
at any time tk by regression as follows: We approximate the value function at time tk by
a mean-field neural network ϑηk

(µ)(x) valued in R, and minimize over the parameters ηk

of this neural network the quadratic loss function

E
∣

∣Yk − ϑηk
(µk)(Xk)

∣

∣

2
, (4.4)
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Algorithm 6 Deep MKV BSDE.

Input data: A mean-field neural network Uθ(µ)(x), and a time-dependent mean-field neu-
ral network Zθ(t, µ)(x).
Initialization: Learning rate γ and parameters θ.
for each epoch do

Generate a batch of M initial distributions µ
(m)
0 , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N.

Compute sample trajectories X
(m),(n)
i , X̃

(m),(n)
i ,Y (m),(n)

i , Ỹ (m),(n)
i , n = 1, . . . , N, and

estimate µ̂
(m)
i , i = 0, . . . , NT .

Compute the batch loss LM,N(θ) and its gradient∇θ LM,N(θ).
Update θ ← θ − γ∇θ LM,N(θ).

Return: The set of optimized parameters θ∗.

where (Xk, Yk) are generated by using Eq. (4.3) for i = 0, . . . , k − 1 (here Yk is the first
component of Yk = (Yk, Pk) in (2.3)-(2.4)), and µk is estimated from the distribution of
the Xk.

In order to avoid the cost of solving Eq. (4.4) at each time step, we can propose two
other global methods permitting to obtain directly the value function.

We first present a variation of the deep BSDE algorithm by considering two time-
dependent mean-field neural networks Yθ(t, µ)(x) and Zθ(t, µ)(x), for approximating the
pair solution of the MKV BSDE at any time. We then define by forward induction: Starting
from X0 ∼ µ0, for i = 0, . . . , NT − 1,

Xi+1 = Xi + B
(

Xi, µi,Yθ(ti, µi)(Xi)
)

∆t + σ(Xi, µi)∆Wi, (4.5)

and minimize over θ the global loss function as a sum of local loss functions

L̃(θ)=E

[

NT−1

∑
i=1

∣

∣

∣
Yθ(ti+1, µi+1)(Xi+1)−Yθ(ti, µi)(Xi)−Zθ(ti, µi)(Xi)∆Wi

−Ẽ
[

H
(

Xi, µi,Yθ(ti, µi)(Xi),Zθ(ti, µi)(Xi), X̃i,Yθ(ti, µi)(X̃i),Zθ(ti, µi)(X̃i)
)]

∆t
∣

∣

∣

2
]

with the convention that Yθ(tNT
, µ)(x) = G(x, µ). In practical implementation, we use

a training sample of probability measures µ
(m)
0 , and then for each m = 1, . . . , M, N samples

X
(m),(n)
0 ∼ µ

(m)
0 , X

(m),(n)
i , X̃

(m),(n)
i , n = 1, . . . , N, according to (4.5), and estimated probabil-

ity measures µ̂
(m)
i , i = 1, . . . , NT . The loss function is then approximated by L̃M,N(θ).

The pseudo-code is described in Algorithm 7. Finally, we present a multi-step ver-
sion of the deep MKV BSDE algorithm. We consider two time-dependent mean-field
neural networks Yθ(t, µ)(x) and Zθ(t, µ)(x), for approximating the pair solution of the
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Algorithm 7 Deep MKV BSDE Global/Local.

Input data: Two time-dependent mean-field neural network Y(t, µ)(x),Zθ(t, µ)(x).
Initialization: Learning rate γ and parameters θ.
for each epoch do

Generate a batch of M initial distributions µ
(m)
0 , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N.

Compute sample trajectories X
(m),(n)
i , X̃

(m),(n)
i , n = 1, . . . , N, and estimate µ̂

(m)
i ,

i = 0, . . . , NT .

Compute the batch loss L̃M,N(θ) and its gradient∇θ L̃M,N(θ).
Update θ ← θ − γ∇θ L̃M,N(θ).

Return: The set of optimized parameters θ∗.

MKV BSDE at any time, and define by forward induction: Starting from X0 ∼ µ0 for
i = 0, . . . , NT − 1,

Xi+1 = Xi + B
(

Xi, µi,Yθ(ti, µi)(Xi)
)

∆t + σ(Xi, µi)∆Wi. (4.6)

The global loss function to be minimized is of the form

Lmulti(θ) = E

[

NT−1

∑
i=0

∣

∣

∣

∣

G(XNT
, µNT

)−
NT−1

∑
j=i

Zθ(tj, µj)(Xj)∆Wj −Yθ(ti, µi)(Xi)

−
NT−1

∑
j=i

Ẽ

[

H
(

Xj, µj,Yθ(tj, µj)(Xj),Zθ(tj, µj)(Xj), X̃j,Yθ(tj, µj)(X̃j),

Zθ(tj, µj)(X̃j)
)]

∆t

∣

∣

∣

∣

2
]

.

Again, in practical implementation, we use a training sample of probability measures

µ
(m)
0 , and then for each m ∈ {1, . . . , M}, N samples X

(m),(n)
0 ∼ µ

(m)
0 , X

(m),(n)
i , X̃

(m),(n)
i ,

n = 1, . . . , N, according to (4.6), and estimated probability measures µ̂
(m)
i , i = 1, . . . , NT.

The loss function is then approximated by Lmulti
M,N (θ).

The pseudo-code is described in Algorithm 8. The output of Algorithms 7 and 8 is
an approximation of the Y component of the BSDE at initial time t0 = 0 by a mean-
field neural network Yθ∗(t0, .)(.), and yields approximation of the Y , at other times ti, i =
1, . . . , NT− 1, andZ at times ti, i = 0, . . . , NT− 1, by mean-field neural networksYθ∗i

(ti, µi)

(Xi), Zθ∗(ti, µi)(Xi) along the law µi, and state Xi explored during the learning algorithm.
In the case of global algorithms using the cylindrical network, there is no requirement

to adapt the parameter K. The need for adaptation methods, as proposed in Section 2.2,
arises primarily when employing the bin method.
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Algorithm 8 Deep multi-step MKV BSDE.

Input data: Two time-dependent mean-field neural networks Y(t, µ)(x),Zθ(t, µ)(x).
Initialization: Learning rate γ and parameters θ.

for each epoch do

Generate a batch of M initial distributions µ
(m)
0 , m = 1, . . . , M.

for each batch m do

Generate Brownian increments ∆W
(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N.

Compute sample trajectories X
(m),(n)
i , X̃

(m),(n)
i , n = 1, . . . , N, and estimate µ̂

(m)
i ,

i = 0, . . . , NT .

Compute the batch loss Lmulti
M,N (θ) and its gradient∇θ Lmulti

M,N (θ).

Update θ ← θ − γ∇θ Lmulti
M,N (θ).

Return: The set of optimized parameters θ∗.

5 Numerical examples

We shall illustrate the results of our different algorithms on three test cases. The two first
examples are MKV control problems where the diffusion coefficient is constant, and the
BSDE approach can be used. The third example is a classical mean variance problem,
hence with control on the diffusion coefficient. We then test the three cases using the dy-
namic programming-based algorithms and for the two first cases using also the backward
SDE-based algorithms.

For each problem, we will test the optimized solutions v(µ0) found by using different
initial distributions µ0 and compare the result obtained to the analytical solution or the
reference calculated by an other method. For all test cases, we keep the same parameters
for the neural networks:

• For the bin method, we take 2 layers of 20 neurons.

• For the cylinder method, we take 2 layers of 20 neurons for the two networks.

For both methods we use the tanh activation function. At each iteration of the ADAM
gradient method [23], we consider for each of the M tested distributions N = 100000
realizations of the process X. These parameters are chosen accordingly the results of [25].
We either take a batch size equal to M = 5, M = 8, M = 10 or M = 20, using between
30000 to 120000 gradient iterations: we have to adapt the batch size and the number of
gradient iterations to be able to solve the problem on the graphic card GPU NVidia V100
32 Gb (except when specified due to memory limitation) and in order to obtain the result
in less than 3 days. K in the tables below is the number of bins used, and ∆t = T/NT is
the time step.
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5.1 The test examples

5.1.1 Systemic risk model

We consider a mean-field model of systemic risk introduced in [8]. This model was intro-
duced in the context of mean field games but here we consider a cooperative version. The
limit problem (when the number of banks is large) of the social planner (central bank) is
formulated as follows. The log-monetary reserve of the representative bank is governed
by the mean-reverting controlled McKean-Vlasov dynamics

dXt =
[

κ(E[Xt]− Xt) + αt

]

dt + σdWt , X0 ∼ µ0,

where α = (αt)t is the control rate of borrowing/lending to a central bank that aims to
minimize the functional cost

J(α) = E

[

∫ T

0
f̃ (Xt, E[Xt], αt) dt + g̃(XT , E[XT ])

]

→ v(µ0) = inf
α

J(α), (5.1)

where the running and terminal costs are given by

f̃ (x, x̄, a) =
1

2
a2 − qa(x̄− x) +

η

2
(x̄− x)2, g̃(x, x̄) =

c

2
(x− x̄)2

for some positive constants q, η, c > 0, with q2 ≤ η. Notice that in this linear-quadratic ex-
ample, the objective function is convex with respect to the control process, which ensures
the convergence of the global algorithm.

The explicit solution of the linear-quadratic McKean-Vlasov control problem (5.1) is
solved via the resolution of a Riccati equation (see [2]), and is analytically given by

v(t, µ) =
∫

R

V(t, x, µ)µ(dx) = Qt

∫

R

(x− µ̄)2µ(dx) + σ2
∫ T

t
Qsds, (5.2)

where we set

µ̄ := Eξ∼µ[ξ] =
∫

R

xµ(dx),

and

Qt = −
1

2

[

κ + q−
√

∆

√
∆ sinh

(
√

∆(T − t)
)

+ (κ + q + c) cosh
(
√

∆(T − t)
)

√
∆ cosh

(
√

∆(T − t)
)

+ (κ + q + c) sinh
(
√

∆(T − t)
)

]

with
√

∆ =
√

(κ + q)2 + η − q2, and

∫ T

t
Qsds =

1

2
ln

[

cosh
(

√
∆(T − t)

)

+
κ + q + c√

∆
sinh

(

√
∆(T − t)

)

]

− 1

2
(κ + q)(T − t).

In this example, the function â that attains the infimum of the Hamiltonian function is
â(x, µ, p) = q(µ̄ − x) − p, the function in (2.1) is U (t, x, µ) = 2Qt(x − µ̄), which yields
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the optimal feedback control: a⋆(t, x, µ) = (q + 2Qt)(µ̄− x). The BSDE (2.3)-(2.4) is then
written as






















dXt =
[

(κ + q)(E[Xt]− Xt)− Pt

]

dt + σdWt , X0 ∼ µ0,

dYt = −
[

1

2
(η − q2)(E[Xt]− Xt)2 +

1

2
P2

t

]

dt + ZtdWt, YT =
c

2
(XT −E[XT ])

2,

dPt =
[

−(κ+q)(E[Pt]−Pt)+(η − q2)(E[Xt]−Xt)
]

dt+MtdWt, PT = −c(E[XT ]−XT).

For the numerical tests of the different methods, we take σ = 1, κ = 0.6, q = 0.8,
T = 0.2, C = 2, η = 2. We solve the problem (5.1) using our various algorithms and
compare the solution obtained at t = 0 with v(0, µ0) given by (5.2) for different initial
distributions µ0 plotted on Fig. 5.1:

Case 1. Gaussian with µ̄0 = 0, std(µ0) = 0.2.

Case 2. Gaussian with µ̄0 = 0.3, std(µ0) = 0.05.

Case 3. Gaussian with µ̄0 = 0., std(µ0) = 0.05.

Case 4. Mixture of two Gaussian random variables: X0=P(−k+θY)+(1−P)(k+θȲ)
with P a Bernouilli random variable with parameter 1/2, k =

√
3/10, θ = 0.1, Y,

Ȳ ∼ N (0, 1).

Case 5. Mixture of two Gaussian random variables X0=P(−k+θY)+(1−P)(−k+θȲ)
with P a Bernouilli random variable with parameter 1/2, k = 0.25, θ = 0.1, Y, Ȳ ∼
N (0, 1).

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 5.1: Distribution µ0 tested on the systemic case.
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Case 6. Mixture of 3 Gaussian random variables : X0 = [−1⌊3U⌋=0k + 1⌊3U⌋=1k] + θY

with U ∼ U(0, 1), k = 0.3, θ = 0.07, Ȳ ∼ N (0, 1).

Notice that Cases 1 and 4 have the same variance for µ0 so that the values v(0, µ0) of (5.2)
should be the same. Similarly, values of Cases 2 and 3 are the same.

5.1.2 Min/max linear quadratic MKV control

We next consider a mean-field model in which the dynamics is linear, the running cost is
quadratic in the position, the control and the expectation of the position, while the termi-
nal cost gives inventive to be close to one of two targets. This type of model is inspired
by the min-LQG problem of [28]. More precisely, we consider the following controlled
McKean-Vlasov dynamics:

dXt =
[

AXt + ĀE[Xt] + Bαt

]

dt + σdWt , X0 ∼ µ0,

where α = (αt)t is the control, and the agent aims to minimize the functional cost

J(α) = E

[

∫ T

0
f (Xt, E[Xt], αt)dt + g(XT)

]

→ v(µ0) = inf
α

J(α),

where the running and terminal costs are given by

f (x, x̄, a) =
1

2

(

Qx2 + Q̄(x− Sx̄)2 + Ra2
)

, g(x) = min
{

|x− ζ1|2, |x− ζ2|2
}

for some non-negative constants Q, Q̄, S, R, and two real numbers ζ1 and ζ2. Notice that g
is not a convex function, and the solution to the MKV BSDE is not necessarily an optimal
control.

In this example, the BSDE (2.3)-(2.4) is then written as







































dXt=

[

AXt + ĀE[Xt]−
B2

R
Pt

]

dt + σdWt , X0 ∼ µ0,

dYt=−
1

2

[

QX2
t +Q̄(Xt−SE[Xt])2+

B2

R
P2

t

]

dt+ZtdWt, YT =min
[

|XT−ζ1|2, |XT−ζ2|2
]

,

dPt=−
[

APt + ĀE[Pt] + QXt + Q̄(Xt −E[Xt]) + Q̄(S− 1)2
E[Xt]

]

dt + MtdWt,

PT = 2
(

XT −min(ζ1, ζ2)1XT≤ ζ1+ζ2
2

−max(ζ1, ζ2)1XT>
ζ1+ζ2

2

)

.

For the numerical tests, we take A = 1, Ā = 0.5, B = 1, Q = Q̄ = R = S = 1, σ =
0.5, ζ1 = 0.25, ζ2 = 1.75. We first solve the problem (1.1) by the different algorithms and
we can compare the solution v(µ0) obtained for different distributions µ0 to a reference
calculated using [9] approach. Notice that [9] method needs to be run for each initial
distribution tested. We use three different distributions µ0 plotted on Fig. 5.2:

Case 1. Gaussian distribution µ̄0 = 1, std(µ0) = 0.2. The reference values are 0.484 for
T = 0.2, and 0.818 for T = 0.5.
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Case 2. Mixture of two Gaussian random variables : X0 = P(ζ1+θY)+(1−P)(ζ2+θȲ)
with P a Bernouilli random variable with parameter 1/2, θ = 0.15, Y, Ȳ, Ỹ ∼ N (0, 1),
with reference values 0.494 for T = 0.2, and 1.082 for T = 0.5.

Case 3. Mixture of three Gaussian random variables: X0 = [1⌊5U⌋<2ζ1 + 1⌊5U⌋>3ζ2 +

12≤⌊5U⌋≤3(ζ1 + ζ2)] + θY with U ∼ U(0, 1), θ = 0.05 with reference values 0.491 for
T = 0.2, and 0.836 for T = 0.5.

Case 1 Case 2 Case 3

Figure 5.2: Distribution µ0 tested on the min/max linear case.

5.1.3 Mean-variance problem

We consider the celebrated Markowitz portfolio selection problem where an investor can
invest at any time t an amount αt in a risky asset (assumed for simplicity to follow a Black-
Scholes model with constant rate of return β and volatility ν > 0), hence generating
a wealth process X = Xα with dynamics

dXt = αtβdt + αtνdWt, 0 ≤ t ≤ T, X0 ∼ µ0.

The goal is then to minimize over portfolio control α the mean-variance criterion

J(α) = λVar
(

Xα
T

)

−E
[

Xα
T

]

,

where λ > 0 is a parameter related to the risk aversion of the investor.
We refer to [22] for the McKean-Vlasov approach to Markowitz mean-variance prob-

lems (in a more general context), and we recall that the solution to the Bellman equation
is given by

V(t, x, µ) = λe−R(T−t)(x− µ̄)2 − x− 1

4λ

[

eR(T−t) − 1
]

, (5.3)

U (t, x, µ) = 2λe−R(T−t)(x−Eµ[ξ])− 1,

where we set R := β2/ν2. Moreover, the optimal feedback control is given by

a
∗(t, x, µ) = − β

ν2

(

x− µ̄− eR(T−t)

2λ

)

.
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Note that with this model, the BSDE approach cannot be used as the volatility is con-
trolled.

We test our algorithms with the parameters β = 0.1, ν = 0.4, λ = 0.5. We compare the
solutions obtained at t = 0 to the analytical solution v(µ0) = Eξ∼µ0

[V(0, ξ, µ0)] given by
(5.3) for different initial distributions µ0 plotted in Fig. 5.3, and explicitly given by:

Case 1. Gaussian distribution with µ̄0 = 0.1, std(µ0) = 0.2.

Case 2. Gaussian distribution with µ̄0 = 0.2, std(µ0) = 0.025.

Case 3. Gaussian distribution with µ̄0 = 0.3, std(µ0) = 0.025.

Case 4. Mixture of two Gaussian random variables: X0 = P(−k + a + θY)+(1− P)
(−k + a + θȲ) with P a Bernouilli random variable with parameter 1/2, k =

√
3/10,

a = 0.1, θ = 0.1, Y, Ȳ ∼ N (0, 1).

Case 5. Mixture of two Gaussian random variables: X0 = P(−k + a + θY)+(1− P)
(−k + a + θȲ) with P a Bernouilli random variable with parameter 1/2, a = 0.05,
k = 0.1, θ = 0.1, Y, Ȳ ∼ N (0, 1).

Case 6. Mixture of 3 Gaussian random variables: X0 = a+[−1⌊5U⌋<2k+1⌊5U⌋>3k] + θY

with U ∼ U(0, 1), a = 0.2, k = 0.3, θ = 0.07, Ȳ ∼ N (0, 1).

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 5.3: Distribution µ0 tested on the mean variance case.

5.1.4 A toy example of non linear quadratic McKean-Vlasov control problem

We consider a one-dimensional controlled mean-field dynamics of the form

dXt =
[

β(Xt , PXt
) + αt

]

dt + σdWt , 0 ≤ t ≤ T, X0 ∼ µ0
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with a cost functional of the form

J(α) = E

[

∫ T

0

(

F(t, Xt, PXt
) +

1

2
|αt|2

)

dt + g(XT, PXT
)

]

→ v(µ0) = inf
α∈A

J(α),

where g is of the form
g(x, µ) = Eξ∼µ[w(x− ξ)]

for some smooth C2 even function w on R, e.g. w(x) = cos(x), and F is a function to be
chosen later.

In this case, the optimal feedback control valued in A = R is given by

a
⋆(t, x, µ) = â

(

t, x,U (t, x, µ)
)

= −U (t, x, µ) = −∂µv(t, µ)(x),

v(t, µ) = Eξ∼µ[V(t, ξ, µ)],

and V is solution to the master Bellman equation

∂tV(t, x, µ) +
(

β(x, µ)− U (t, x, µ)
)

∂xV(t, x, µ) +
σ2

2
∂2

xxV(t, x, µ)

+ Eξ∼µ

[

(

β(ξ, µ)− U (t, ξ, µ)
)

∂µV(t, x, µ)(ξ) +
σ2

2
∂x′∂µV(t, x, µ)(ξ)

]

+ F(t, x, µ) +
1

2
|U (t, x, µ)|2 = 0 (5.4)

with the terminal condition V(T, x, µ) = g(x, µ).
We look for a solution to the Master equation of the form

V(t, x, µ) = eT−t
Eξ∼µ[w(x− ξ)].

For such function V, we have ∂tV(t, x, µ) = −V,

∂xV(t, x, µ) = eT−t
Eξ∼µ[w

′(x− ξ)], ∂2
xxV(t, x, µ) = eT−t

Eξ∼µ[w
′′(x− ξ)]

∂µV(t, x, µ)(ξ) = −eT−tw′(x− ξ), ∂x′∂µV(t, x, µ)(ξ) = eT−tw′′(x− ξ),

and

U (t, x, µ) = eT−t
Eξ∼µ[w

′(x− ξ)− w′(ξ − x)]

= 2eT−t
Eξ∼µ[w

′(x− ξ)] = 2∂xV(t, x, µ)

since w is even. By plugging these derivatives expressions of V into the left-hand side of
(5.4), we then see that by choosing F equal to

F(t, x, µ) = eT−t
Eξ∼µ

[

(w− σ2w′′)(x− ξ) +
(

β(ξ, µ) − β(x, µ)
)

w′(x− ξ)
]

− 2e2(T−t)
E(ξ,ξ ′)∼µ⊗µ

[

w′(x− ξ)w′(ξ − ξ ′)
]

,

the function V satisfies the master Bellman equation.
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For the choice of w(x) = cos(x), and using trigonometric relations, the function F is
written as

F(t, x, µ) = cos(x)
[

eT−t
(

(1 + σ2)Eξ∼µ

(

cos(ξ)
)

+ Eξ∼µ

(

sin(ξ)β(ξ, µ)
)

− β(x, µ)Eξ∼µ

(

sin(ξ)
)

)

− 2e2(T−t)
(

Eξ∼µ

(

sin(ξ) cos(ξ)
)

Eξ∼µ

(

sin(ξ)
)

−Eξ∼µ

(

sin2(ξ)
)

Eξ∼µ

(

cos(ξ)
)

)]

+ sin(x)
[

eT−t
(

(1 + σ2)Eξ∼µ

(

sin(ξ)
)

−Eξ∼µ

(

β(ξ, µ) cos(ξ)
)

+ β(x, µ)Eξ∼µ

(

cos(ξ)
)

)

− 2e2(T−t)
(

Eξ∼µ

(

sin(ξ) cos(ξ)
)

Eξ∼µ

(

cos(ξ)
)

−Eξ∼µ

(

cos2(ξ)
)

E
(

sin(ξ)
)

)]

Note that with this model, the BSDE approach cannot be used by lack of convexity.
For this example, we take T = 0.4, σ = 1, β(x, µ) = µ̄− x, and we test the three distri-

butions as given in the Min/max example (Section 5.1.2).

5.1.5 A two dimensional example

We consider a multi-dimensional extension of the linear quadratic (LQ) systemic risk
model of Section 5.1.1 by supposing that on each dimension, the dynamic satisfies the
same equation with independent Brownian motions, and that the cost functions are the
sum over each component of the cost function in the univariate model. In this case, the

value function is given by V(t, x, µ) = ∑
d
i=1 V1(t, xi, µi), for t ∈ [0, T], x = (xi)i∈J1,dK ∈

R
d, µi is the i-th marginal law of µ ∈ P2(R

d), and V1 is the value function in the univariate
model given by (5.2).

The parameters of the dynamic in each dimension are σ = 0.5, κ = 0.6, q = 0.8,
T = 0.2, c = 2, η = 2. We solve the two dimensional version of the problem (5.1) by
implementing our various algorithms, and compare the solution obtained at t = 0 with
v(0, µ0) for the initial distributions µ0 with the same marginals µ1

0 = µ2
0 in the two dimen-

sions plotted on Fig. 5.4:

Case 1. Gaussian marginals with µ̄1
0 = 0, std(µ1

0) = 0.2.

Case 2. Mixture of two Gaussian random variables giving the marginal: X1
0 = P(−k1+

θ1Y) + (1 − P)(k2 + θ2Ȳ) with P a Bernoulli random variable with parameter 1/2,
k1 = 0, k2 = 0.5, θ1 = θ2 = 0.15, Y, Ȳ ∼ N (0, 1).

Case 3. Mixture of three Gaussian random variables giving the marginal: X1
0=kP+θPY,

where P is a random variable taking values (1, 2, 3) with probability (2/5, 2/5, 1/5),
k1 = −0.05, k2 = 0., k3 = 0.5, θ1 = θ2 = θ3 = 0.05, Y ∼ N (0, 1).
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Case 1 Case 2 *Case 3

Figure 5.4: Marginals of distribution µ0 tested on the two dimensional systemic model.

5.2 Results for the systemic risk model

5.2.1 Dynamic programming-based algorithms

We report the results for this model of Section 5.1.1 in Tables 5.1-5.3. It turns out that
the results obtained by Algorithms 1 and 2 are excellent and very close. We can see that
results with K = 100 or K = 200 bins for the bins method are very close. Notice that with
the bins method, we have to limit the number K of bins due to memory issues for these
two algorithms. We clearly see the effect of the convergence of the Euler scheme used
to discretized the equations on the convergence rate. The Bins method and the Cylinder
method provide very similar results but as the cost of Algorithm 1 is in O(NT) while
the cost of Algorithm 2 is in O(NT(NT − 1)/2), Algorithm 1 is clearly preferred. The
computational time values presented in Table 5.2 provide confirmation that Algorithm 2
becomes impractical and less usable as the number of time steps increases.

The results obtained by the value iteration Algorithm 3 are still good but less accurate
than the results obtained by the two other algorithms. The cylinder methods appears to be
the best of the two methods. We notice a small degradation of the results as we refine the
time step with the bins method. Notice that the memory used by this algorithm is small

Table 5.1: Global Algorithm 1 for systemic risk with T = 0.2,K = [−1.38, 1.62] using M = 10, and 60000
gradient iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1670 0.1642 0.1495 0.1446 0.1497 0.1446 8160

Bins 100 0.01 0.1651 0.1642 0.1472 0.1446 0.1470 0.1446 16200

Cylinder 500 0.02 0.1684 0.1642 0.1489 0.1446 0.1492 0.1446 8100

Cylinder 500 0.01 0.1665 0.1642 0.1469 0.1446 0.1467 0.1446 15240

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1675 0.1642 0.1824 0.1812 0.1792 0.1772

Bins 100 0.01 0.1648 0.1642 0.1803 0.1812 0.1766 0.1772

Cylinder 500 0.02 0.1684 0.1642 0.1848 0.1812 0.1817 0.1772

Cylinder 500 0.01 0.1660 0.1642 0.1835 0.1812 0.1795 0.1772
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Table 5.2: Policy iteration Algorithm 2 for systemic risk with T = 0.2,K = [−1.38, 1.62] using M = 10, and
30000 gradient iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1692 0.1642 0.1493 0.1446 0.1495 0.1446 20000

Bins 100 0.01 0.1673 0.1642 0.1478 0.1446 0.1470 0.1446 73300

Bins 200 0.01 0.1674 0.1642 0.1480 0.1446 0.1477 0.1446 108800

Cylinder 500 0.02 0.1688 0.1642 0.1492 0.1446 0.1490 0.1446 46600

Cylinder 500 0.01 0.1662 0.1642 0.1468 0.1446 0.1471 0.1446 160200

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1691 0.1642 0.1862 0.1821 0.1822 0.1772

Bins 100 0.01 0.1670 0.1642 0.1836 0.1812 0.1799 0.1772

Bins 200 0.01 0.1675 0.1642 0.1844 0.1812 0.1800 0.1772

Cylinder 500 0.02 0.1684 0.1642 0.1862 0.1812 0.1819 0.1772

Cylinder 500 0.01 0.1663 0.1642 0.1836 0.1812 0.1794 0.1772

Table 5.3: Value iteration Algorithm 3 for systemic risk with T = 0.2, K = [−1.38, 1.62], M = 10, and 30000
gradient iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 500 0.02 0.1620 0.1642 0.1373 0.1446 0.1698 0.1446 36000

Bins 500 0.01 0.1873 0.1642 0.1673 0.1446 0.1841 0.1446 72000

Cylinder 500 0.02 0.1722 0.1642 0.1540 0.1446 0.1554 0.1446 9300

Cylinder 500 0.01 0.1704 0.1642 0.1520 0.1446 0.1571 0.1446 18600

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 500 0.02 0.1630 0.1642 0.1809 0.1812 0.1755 0.1772

Bins 500 0.01 0.1880 0.1642 0.2037 0.1812 0.1991 0.1772

Cylinder 500 0.02 0.1722 0.1642 0.1880 0.1812 0.1843 0.1772

Cylinder 500 0.01 0.1704 0.1642 0.1864 0.1812 0.1827 0.1772

compared to the two other algorithms and it permits to take a high number K of bins for
the bins method (even if it is not necessary on this case).

In Table 5.4, we provide sensitivity results for Cases 1, 4, and 6 using Algorithms 1 and 3
with different methods (bins and cylinder) and parameter settings (T/NT = 0.02, K = 100
for bins, and K = 500 for cylinder). The results are based on 10 runs, and we report
the average value obtained along with the standard deviation. It is observed that the
results obtained using different methods and algorithms are generally very similar, except
for Algorithm 3 with the cylinder network. This particular algorithm shows a higher
standard deviation, which is a known characteristic of this approach, as mentioned in [21].
Furthermore, all the results seem to converge to the discrete-time solution of the problem,
indicating the reliability and accuracy of the algorithms employed.
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Table 5.4: Some sensitivity results using 10 runs.

Alg Method
Case 1 Case 4 Case 6

Calc Std Anal Calc Std Anal Calc Std Anal

1 Bins 0.1691 0.0007 0.1642 0.1692 0.0010 0.1642 0.1825 0.0007 0.1772

1 Cyl 0.1687 0.0002 0.1642 0.1686 0.0002 0.1642 0.1816 0.0002 0.1772

2 Bins 0.1694 0.0003 0.1642 0.1694 0.0002 0.1642 0.1821 0.0002 0.1772

2 Cyl 0.1687 0.0002 0.1642 0.1687 0.0001 0.1642 0.1815 0.0002 0.1772

3 Bins 0.1692 0.0092 0.1642 0.1692 0.0093 0.1642 0.1822 0.0089 0.1772

3 Cyl 0.1807 0.0066 0.1642 0.1807 0.0066 0.1642 0.1931 0.0064 0.1772

5.2.2 Results for Backward SDE-based algorithms

Results for the systemic example of Section 5.1.1 are given in Tables 5.5-5.9. All the pro-
posed methods converge very accurately to the solution. As previously seen in the results
of the dynamic programming-based algorithms, the number of bins does not need to be
large for the bins network. For this test case, the numerical values obtained does not per-
mit to select the best algorithm. As Algorithm 5 is by far the most costly, it should not be
the preferred choice. It is difficult to compare the other algorithms in terms of computing
time, but all global algorithms have roughly the same cost in terms of time and the local
deep backward Algorithm 4 is certainly more costly as we have to achieve an optimization
per time step. This drawback due to the number of optimizations is reduced by transfer
learning, namely the fact that at each time step the problem is much more smaller to solve
as we can initialize the parameters of networks at a given time step by the parameters of
networks of the preceding time step. On the other hand, we point out that all the global
algorithms are too far memory consuming to be able to compete with the local deep back-
ward Algorithm 4 which seems to be globally the best choice.

Table 5.5: Local deep backward BSDE Algorithm 4, T = 0.2,K = [−1.38, 1.62], using M = 10, and 30000
gradient iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 200 0.02 0.1709 0.1642 0.1513 0.1446 0.1516 0.1446 30000

Bins 200 0.01 0.1672 0.1642 0.1479 0.1446 0.1475 0.1446 111000

Cylinder 500 0.02 0.1688 0.1642 0.1494 0.1446 0.1489 0.1446 20500

Cylinder 500 0.01 0.1663 0.1642 0.1469 0.1446 0.1472 0.1446 68800

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1711 0.1642 0.1881 0.1812 0.1838 0.1772

Bins 200 0.01 0.1671 0.1642 0.1845 0.1812 0.1800 0.1772

Cylinder 500 0.02 0.1686 0.1642 0.1855 0.1812 0.1817 0.1772

Cylinder 500 0.01 0.1662 0.1642 0.1834 0.1812 0.1787 0.1772
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Table 5.6: Deep backward multi-step Algorithm 5, T = 0.2,K = [−1.38, 1.62] using M = 10, and 30000 gradient
iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1690 0.1642 0.1493 0.1446 0.1497 0.1446 7500

Bins 200 0.02 0.1689 0.1642 0.1494 0.1446 0.1494 0.1446 11700

Bins 100 0.01 0.1664 0.1642 0.1474 0.1446 0.1470 0.1446 15000

Bins 200 0.01 0.1664 0.1642 0.1472 0.1446 0.1471 0.1446 23400

Cylinder 500 0.02 0.1683 0.1642 0.1491 0.1446 0.1492 0.1446 10500

Cylinder 500 0.01 0.1664 0.1642 0.1472 0.1446 0.1466 0.1446 21000

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1690 0.1642 0.1860 0.1812 0.1816 0.1772

Bins 200 0.02 0.1687 0.1642 0.1853 0.1812 0.1818 0.1772

Bins 200 0.01 0.1669 0.1642 0.1838 0.1812 0.1801 0.1772

Bins 200 0.01 0.1666 0.1642 0.1835 0.1812 0.1796 0.1772

Cylinder 500 0.02 0.1683 0.1642 0.1858 0.1812 0.1816 0.1772

Cylinder 500 0.01 0.1665 0.1642 0.1837 0.1812 0.1795 0.1772

Table 5.7: Global deep MKV BSDE Algorithm 6, T = 0.2,K = [−1.38, 1.6] using M = 10, and 30000 gradient
iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 100 0.02 0.1691 0.1642 0.1496 0.1446 0.1498 0.1446 4500

Bins 200 0.02 0.1691 0.1642 0.1495 0.1446 0.1497 0.1446 6400

Bins 200 0.01 0.1663 0.1642 0.1468 0.1446 0.1471 0.1446 12400

Cylinder 500 0.02 0.1686 0.1642 0.1491 0.1446 0.1492 0.1446 4530

Cylinder 500 0.01 0.1665 0.1642 0.1466 0.1446 0.1466 0.1446 8400

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1692 0.1642 0.1858 0.1812 0.1815 0.1772

Bins 200 0.02 0.1694 0.1642 0.1863 0.1812 0.1824 0.1772

Bins 200 0.01 0.1668 0.1642 0.1838 0.1812 0.1793 0.1772

Cylinder 500 0.02 0.1686 0.1642 0.1857 0.1812 0.1816 0.1772

Cylinder 500 0.01 0.1667 0.1642 0.1836 0.1812 0.1795 0.1772

In Table 5.10, sensitivity results are presented based on ten runs using the same hy-
perparameters as in the dynamic programming approach. Similar to the previous table,
all the algorithms demonstrate consistent results with low standard deviations, except for
Algorithm 8 with bins, which exhibits a higher standard deviation. Additionally, it is ob-
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Table 5.8: Global/local deep MKV BSDE Algorithm 7, T = 0.2,K = [−1.38, 1.62] using M = 10, 30000 gradient
iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 200 0.02 0.1753 0.1642 0.1545 0.1446 0.1706 0.1446 6400

Bins 200 0.01 0.1670 0.1642 0.1483 0.1446 0.1597 0.1446 12300

Cylinder 500 0.02 0.1684 0.1642 0.1496 0.1446 0.1491 0.1446 4200

Cylinder 500 0.01 0.1667 0.1642 0.1469 0.1446 0.1468 0.1446 8100

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1758 0.1642 0.1931 0.1812 0.1887 0.1772

Bins 200 0.01 0.1661 0.1642 0.1841 0.1812 0.1797 0.1772

Cylinder 500 0.02 0.1687 0.1642 0.1856 0.1812 0.1816 0.1772

Cylinder 500 0.01 0.1664 0.1642 0.1836 0.1812 0.1793 0.1772

Table 5.9: Global deep multi-step MKV BSDE Algorithm 8, T = 0.2,K = [−1.38, 1.62] using M = 10, 30000
gradient iterations.

Method K ∆t = T/NT
Case 1 Case 2 Case 3 Training

Calc Anal Calc Anal Calc Anal time (s)

Bins 200 0.02 0.1689 0.1642 0.1507 0.1446 0.1528 0.1446 6300

Bins 200 0.01 0.1664 0.1642 0.1470 0.1446 0.1469 0.1446 12400

Cylinder 500 0.02 0.1685 0.1642 0.1489 0.1446 0.1494 0.1446 4300

Cylinder 500 0.01 0.1658 0.1642 0.1470 0.1446 0.1468 0.1446 83200

Method K ∆t = T/NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1692 0.1642 0.1868 0.1812 0.1821 0.1772

Bins 200 0.01 0.1666 0.1642 0.1829 0.1812 0.1796 0.1772

Cylinder 500 0.02 0.1687 0.1642 0.1855 0.1812 0.1817 0.1772

Cylinder 500 0.01 0.1661 0.1642 0.1834 0.1812 0.1795 0.1772

Table 5.10: Some sensitivity results using 10 runs.

Alg Method
Case 1 Case 4 Case 6

Calc Std Anal Calc Std Anal Calc Std Anal

4 Bins 0.1691 0.0002 0.1642 0.1691 0.0003 0.1642 0.1821 0.0003 0.1772

4 Cyl 0.1688 0.0001 0.1642 0.1687 0.0002 0.1642 0.1817 0.0002 0.1772

5 Bins 0.1691 0.0002 0.1642 0.1691 0.0002 0.1642 0.1820 0.0002 0.1772

5 Cyl 0.1686 0.0003 0.1642 0.1689 0.0003 0.1642 0.1816 0.0001 0.1772

6 Bins 0.1693 0.0005 0.1642 0.1693 0.0004 0.1642 0.1821 0.0004 0.1772

6 Cyl 0.1687 0.0002 0.1642 0.1689 0.0003 0.1642 0.1817 0.0002 0.1772

7 Bins 0.1709 0.0013 0.1642 0.1704 0.0013 0.1642 0.1830 0.0010 0.1772

7 Cyl 0.1686 0.0002 0.1642 0.1686 0.0003 0.1642 0.1817 0.0002 0.1772

8 Bins 0.1691 0.0004 0.1642 0.1691 0.0003 0.1642 0.1820 0.0004 0.1772

8 Cyl 0.1687 0.0002 0.1642 0.1687 0.0002 0.1642 0.1815 0.0002 0.1772
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served that all the algorithms converge to the same value as in the dynamic programming
approach, further confirming their reliability and accuracy.

5.3 Results for the min/max MKV model

5.3.1 Dynamic programming-based algorithms

Results for T = 0.2 are reported in Tables 5.11, 5.13, 5.15: They are very good for all
algorithms and network used. Results for T = 0.5 are reported in Tables 5.12, 5.14, 5.16,
and also give excellent results. Notice that with Algorithm 2, it is impossible to solve
the problem with T = 0.5 using NT = 50 due to memory issues and the time needed
limited to 3 days. As we increase the number of time steps for Algorithm 3, we observe
for the bins methods, as in the previous test case, a small degradation of the results due to
an accumulation of regression error, and therefore Algorithm 1 should be preferred.

It is important to consider that as the maturity increases, the size of K needs to be ad-
justed accordingly to ensure that the particles primarily remain withinK. This adjustment

Table 5.11: Global Algorithm 1 with T = 0.2,K = [0.21, 2.72].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.481 0.483 0.502 0.494 0.489 0.491

Bins 100 0.01 0.481 0.483 0.503 0.494 0.489 0.491

Bins 200 0.01 0.484 0.483 0.498 0.494 0.491 0.491

Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491

Cylinder 500 0.01 0.484 0.483 0.494 0.494 0.491 0.491

Table 5.12: Global Algorithm 1 with T = 0.5,K = [−0.4, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.830 0.818 1.100 1.082 0.848 0.836

Bins 100 0.01 0.833 0.818 1.104 1.082 0.850 0.836

Bins 200 0.01 0.831 0.818 1.092 1.082 0.848 0.836

Cylinder 500 0.02 0.814 0.818 1.080 1.082 0.831 0.836

Cylinder 500 0.01 0.819 0.818 1.085 1.082 0.837 0.836

Table 5.13: Policy iteration Algorithm 2 with T = 0.2,K = [0.21, 2.72].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.480 0.483 0.502 0.494 0.489 0.491

Bins 200 0.02 0.482 0.483 0.496 0.494 0.491 0.491

Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491
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Table 5.14: Policy iteration Algorithm 2 with T = 0.5,K = [−0.4, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.819 0.818 1.088 1.082 0.836 0.836

Bins 200 0.02 0.818 0.818 1.090 1.082 0.836 0.836

Cylinder 500 0.02 0.814 0.818 1.081 1.082 0.831 0.836

Table 5.15: Value iteration Algorithm 3 with T = 0.2,K = [0.21, 2.72].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.494 0.483 0.512 0.494 0.502 0.491

Bins 200 0.02 0.490 0.483 0.493 0.494 0.495 0.491

Cylinder 500 0.02 0.486 0.483 0.493 0.494 0.491 0.491

Table 5.16: Value iteration Algorithm 3 with T = 0.5,K = [−0.4, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.800 0.818 1.084 1.082 0.817 0.836

Bins 200 0.02 0.810 0.818 1.079 1.082 0.828 0.836

Bins 200 0.01 0.835 0.818 1.114 1.082 0.853 0.836

Cylinder 500 0.02 0.811 0.818 1.088 1.082 0.829 0.836

Cylinder 500 0.01 0.810 0.818 1.078 1.082 0.827 0.836

is necessary to accommodate the potential expansion of the distribution’s support as the
maturity lengthens.

5.3.2 Results for Backward SDE-based algorithms

Results for this example of Section 5.1.2 are reported in Tables 5.17-5.21. All algorithms
seem to converge to the good solution except the global deep MKV BSDE Algorithm 6

Table 5.17: Deep backward Algorithm 4, T = 0.5,K = [−0.40, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.8355 0.8180 1.1074 1.0820 0.8537 0.8360

Bins 200 0.02 0.8278 0.8180 1.0962 1.0820 0.8462 0.8360

Bins 200 0.01 0.8343 0.8180 1.0998 1.0820 0.8513 0.8360

Cylinder 500 0.02 0.8249 0.8180 1.0896 1.0820 0.8427 0.8360

Cylinder 500 0.01 0.8312 0.8180 1.0946 1.0820 0.8487 0.8360
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Table 5.18: Deep backward multi-step Algorithm 5, T = 0.5,K = [−0.40, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8277 0.8180 1.0966 1.0820 0.8453 0.8360

Cylinder 500 0.02 0.8259 0.8180 1.0904 1.0820 0.8427 0.8360

Table 5.19: Global deep MKV BSDE Algorithm 6, T = 0.5,K = [−0.40, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8299 0.8180 1.0977 1.0820 0.8485 0.8360

Bins 100 0.01 0.8447 0.8180 1.1111 1.0820 0.8625 0.8360

Bins 200 0.01 0.8369 0.8180 1.1018 1.0820 0.8566 0.8360

Cylinder 500 0.02 0.7801 0.8180 1.0493 1.0820 0.7968 0.8360

Cylinder 500 0.01 0.7597 0.8180 1.0325 1.0820 0.7767 0.8360

Table 5.20: Global/local deep MKV BSDE Algorithm 7, T = 0.5,K = [−0.40, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8528 0.8180 1.1003 1.0820 0.8692 0.8360

Bins 100 0.01 0.9146 0.8180 1.1120 1.0820 0.9219 0.8360

Bins 200 0.01 0.8406 0.8180 1.1001 1.0820 0.8560 0.8360

Cylinder 500 0.02 0.8305 0.8180 1.0952 1.0820 0.8466 0.8360

Cylinder 500 0.01 0.8666 0.8180 1.1104 1.0820 0.8817 0.8360

Table 5.21: Global deep multi-step MKV BSDE Algorithm 8, T = 0.5,K = [−0.40, 3.21].

Method K T/NT
Case 1 Case 2 Case 3

Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8380 0.8180 1.1004 1.0820 0.8497 0.8360

Bins 200 0.01 0.8353 0.8180 1.1002 1.0820 0.8520 0.8360

Cylinder 500 0.02 0.8265 0.8180 1.0902 1.0820 0.8434 0.8360

Cylinder 500 0.01 0.8319 0.8180 1.0951 1.0820 0.8487 0.8360

that always converges on our tests (repeated many times) to a slightly different solution
while using the cylinder network. Notice that, by using the bins network, we avoid the
problem on this test case. Again it is not feasible to refine the time step when implement-
ing the deep backward multi-step Algorithm 5 due to the computational time taken by
the algorithm. The local deep backward Algorithm 4 seems to be the best as the results
obtained in Table 5.17 are very good and the memory needed rather small. Either bins or
cylinder networks can be used.



J. Mach. Learn., 3(2):176-214 209

5.4 Result on the mean variance problem using the dynamic programming ap-
proach

We do not report results from Algorithm 3: Indeed, they diverge for all discretizations
tested. Results for the two other algorithms are given in Tables 5.22 and 5.24 for T = 0.2,
and in Tables 5.23 and 5.25 for T = 0.5. Notice that the number of bins taken for the bins
network has to be high to get an accurate solution.

Again, in term of accuracy, Algorithms 1 and 2 give similar accurate results and the
memory taken by both algorithms is close. However Algorithm 1 has to be preferred as
the computation time is far lower when we are interested by computing the solution only
at time t = 0.

Table 5.22: Global Algorithm 1, T = 0.2, K = [−0.85, 0.9], T/NT = 0.02.

Method K
Case 1 Case 2 Case 3

Calc Anal Calc Anal Calc Anal

Bins 100 -0.0954 -0.0865 -0.1147 -0.1059 -0.3139 -0.3050

Bins 200 -0.0907 -0.0865 -0.1104 -0.1059 -0.3094 -0.3050

Bins 400 -0.0882 -0.0865 -0.1081 -0.1059 -0.3071 -0.3050

Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051

Method K
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 100 -0.0952 -0.0865 -0.0547 -0.0464 -0.1769 -0.1683

Bins 200 -0.0908 -0.0865 -0.0510 -0.0464 -0.1724 -0.1683

Bins 400 -0.0894 -0.0865 -0.0487 -0.0464 -0.1703 -0.1683

Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 5.23: Global Algorithm 1, T = 0.5,K = [−0.85, 0.9], T/NT = 0.02.

Method K
Case 1 Case 2 Case 3

Calc Anal Calc Anal Calc Anal

Bins 200 -0.1018 -0.0965 -0.1214 -0.1156 -0.3200 -0.3147

Bins 400 -0.0976 -0.0965 -0.1163 -0.1156 -0.3149 -0.3147

Cylinder 500 -0.0987 -0.0965 -0.1179 -0.1156 -0.3172 -0.3147

Method K
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 200 -0.1022 -0.0965 -0.0613 -0.0562 -0.1842 -0.1786

Bins 400 -0.0969 -0.0965 -0.0562 -0.0562 -0.1788 -0.1786

Cylinder 500 -0.0985 -0.0965 -0.0583 -0.0562 -0.1804 -0.1786
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Table 5.24: Policy iteration Algorithm 2, T = 0.2,K = [−0.85, 0.9], T/NT = 0.02.

Method K
Case 1 Case 2 Case 3

Calc Anal Calc Anal Calc Anal

Bins 100 -0.0959 -0.0865 -0.1143 -0.1060 -0.3138 -0.3051

Bins 200 -0.0906 -0.0865 -0.1102 -0.1059 -0.3094 -0.3050

Bins 400 -0.0884 -0.0865 -0.1083 -0.1059 -0.3072 -0.3050

Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051

Method K
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 100 -0.0954 -0.0865 -0.0553 -0.0464 -0.1766 -0.1683

Bins 200 -0.0908 -0.0865 -0.0505 -0.0464 -0.1723 -0.1683

Bins 400 -0.0887 -0.0865 -0.0482 -0.0464 -0.1704 -0.1683

Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 5.25: Policy iteration Algorithm 2, T = 0.5,K = [−0.85, 0.9], T/NT = 0.02.

Method K
Case 1 Case 2 Case 3

Calc Anal Calc Anal Calc Anal

Bins 400 -0.0978 -0.0965 -0.1171 -0.1156 -0.3140 -0.3147

Cylinder 500 -0.0986 -0.0965 -0.1175 -0.1156 -0.3164 -0.3147

Method K
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal

Bins 400 -0.0985 -0.0965 -0.0579 -0.0562 -0.1789 -0.1786

Cylinder 500 -0.0986 -0.0965 -0.0583 -0.0562 -0.1807 -0.1786

5.5 Results for the non LQ MKV model using dynamic programming

In Table 5.26, results from different algorithms are provided for one run with a maturity
T = 0.4. The settings used include NT = 20, 30000 gradient iterations, M = 10, and
K = [−0.81, 2.81]. Based on the provided results, it is observed that Algorithm 3 yields
inaccurate results. However, Algorithms 1 and 2 demonstrate a high accuracy in capturing
the desired outcome.

In Table 5.27, the results for Algorithms 1 and 2 are given with a maturity of T = 0.4 and
K = [−1.23, 3.84]. The results are reported for NT = 20. Based on the provided results,
it is observed that Algorithm 1 performs better for larger time steps. This suggests that
Algorithm 1 is more effective in capturing the desired results in scenarios with extended
time steps.

The results obtained from your experiments confirm that Algorithm 1 is the most ef-
fective choice when employing the dynamic programming approach. The algorithm con-
sistently produces the best results, demonstrating its superior performance in solving the
problem at hand. These findings validate the selection of Algorithm 1 as the preferred
choice within the dynamic programming framework.
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Table 5.26: The non Linear Quadratic using T = 0.2.

Alg Method
Case 1 Case 2 Case 3

Calc Anal Calc Anal Calc Anal

1 Bins 1.1840 1.1735 0.9389 0.9200 1.1695 1.1585

1 Cyl 1.1815 1.1736 0.9233 0.9197 1.1666 1.1585

2 Bins 1.1896 1.1735 0.9479 0.9197 1.1757 1.1584

2 Cyl 1.1791 1.1735 0.9239 0.9196 1.1640 1.1585

3 Bins 0.9356 1.1736 0.8282 0.9198 0.9293 1.1585

3 Cyl 1.0449 1.1734 0.8646 0.9196 1.0356 1.1585

Table 5.27: The non Linear Quadratic using T = 0.4.

Alg Method
Case 1 Case 2 Case 3

Calc Anal Calc Anal Calc Anal

1 Bins 1.4607 1.4332 1.1645 1.1233 1.4448 1.4151

1 Cyl 1.4517 1.4332 1.1402 1.1237 1.4332 1.4150

2 Bins 1.4905 1.4333 1.1980 1.1233 1.4750 1.4150

2 Cyl 1.4627 1.4333 1.1473 1.1237 1.4447 1.4150

5.6 Results for the two dimensional systemic risk model of Section 5.1.5

The bin method suffers from the curse of dimensionality, and the numerical resolution
of multi-dimensional problems is time consuming and memory intensive. Therefore, all
experiments are performed in 2D using an NVIDIA H100 80 GB HBM3N graphics card.
Since the bin method is only used to sample distributions with the cylinder network, these
networks can be used with more bins than the bin networks with a given amount of mem-
ory. We test the algorithms using NT = 20, with a resolution range of [−0.63, 0.96]2. For
the bin network we use 30× 30 bins, while for the cylinder network we sample distribu-
tions using 50× 50 bins. We first give results and sensitivities for dynamic programming
based algorithms except for Algorithm 2 (which is too time consuming) in Table 5.28.

We also report the results obtained with the BSDE methods in Table 5.29 (except for
Algorithm 4, which is also time-consuming).

Table 5.28: Results and sensitivities using 10 runs with dynamic programming based methods in dimension 2.

Alg Method
Case 1 Case 4 Case 6

Calc Std Anal Calc Std Anal Calc Std Anal

1 Bins 0.1147 0.0003 0.1134 0.1611 0.0005 0.1604 0.1223 0.0003 0.1208

1 Cyl 0.1142 0.0003 0.1134 0.1609 0.0005 0.1604 0.1220 0.0003 0.1208

3 Bins 0.1360 0.0462 0.1134 0.1752 0.0449 0.1604 0.1364 0.0430 0.1208

3 Cyl 0.1276 0.0145 0.1134 0.1645 0.0068 0.1604 0.1339 0.0123 0.1208
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Table 5.29: Some sensitivity results using 10 runs in dimension 2.

Alg Method
Case 1 Case 2 Case 3

Calc Std Anal Calc Std Anal Calc Std Anal

4 Bins 0.1147 0.0003 0.1134 0.1611 0.0004 0.1604 0.1221 0.0003 0.1208

4 Cyl 0.1141 0.0003 0.1134 0.1613 0.0003 0.1604 0.1220 0.0004 0.1208

6 Bins 0.1147 0.0003 0.1134 0.1610 0.0002 0.1604 0.1222 0.0003 0.1208

6 Cyl 0.1147 0.0002 0.1134 0.1614 0.0004 0.1604 0.1220 0.0002 0.1208

7 Bins 0.1184 0.0007 0.1134 0.1635 0.0006 0.1604 0.1281 0.0015 0.1208

7 Cyl 0.1147 0.0003 0.1134 0.1614 0.0004 0.1604 0.1221 0.0005 0.1208

8 Bins 0.1146 0.0004 0.1134 0.1612 0.0005 0.1604 0.1224 0.0003 0.1208

8 Cyl 0.1148 0.0003 0.1134 0.1613 0.0003 0.1604 0.1219 0.0003 0.1208

The results are all very good, except again for the local Algorithm 3 based on the dy-
namic programming framework. Among the feasible algorithms, the bin Algorithm 7 is
less accurate than the others which yield results close to the exact value, showing that the
remaining error is mainly due to the Euler discretization of the scheme.

6 Conclusion

We have tested numerous algorithms to solve the McKean-Vlasov control problem (1.1)
by using mean-field neural networks. When the problem admits a Backward SDE repre-
sentation from the Pontryagin maximum principle, it is clearly more interesting to adopt
this approach than the dynamic programming-based approaches for several reasons:

• It is observed that the BSDE approach consistently yields stable results across multi-
ple runs. This stability can be attributed to the fact that, in the Pontryagin principle,
the BSDE has a driver that depends on Y instead of the traditional approach where
the driver is a function of Z, as highlighted in [14]. Based on these findings, Al-
gorithm 6 emerges as the best compromise in terms of accuracy and computational
time. This algorithm strikes a balance between achieving accurate results and main-
taining reasonable computational efficiency.

• It is possible to use the local deep backward algorithm [21] (Algorithm 4) that yields
very accurate results and is not limited by the number of time steps due to transfer
learning. Moreover, the method gives the solution of the problem at each time steps
for all the distributions.

• Both networks, either bins or cylinder, can be implemented. Notice that cylinder
methods use less memory than bins methods especially when the number of bins
has to be high to get a good accuracy.

When the maximum Pontryagin principle is not directly available, we distinguish two
cases:
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• First case is when the volatility of the forward process is not controlled. Then two
options are available:

– When the number of time steps it not too high, the global learning algorithm [19]
(Algorithm 1), [17] seems to be the best in terms of accuracy. Then it is possible
to get the function value after t = 0 at “visited distributions” by regression.

– When the number of time steps is too high, memory issues force us to use the
control learning by value iteration of [20] (Algorithm 3 may have difficulties to
converge as shown in the non Linear Quadratic example and in the two dimen-
sional systemic test case). Another option could be to use an hybrid algorithm
as proposed in [29].

• Second case is when there is control on the diffusion coefficient, and then only the
global learning algorithm should be implemented.

In conclusion, it is advisable to prioritize global Algorithms 6 and 1. When using the
cylindrical network, there is no need to make any assumptions or guesses about the pa-
rameter K. However, it is important to note that the global learning algorithms, as ob-
served in [1, 10, 21], may occasionally converge to incorrect solutions, particularly in the
non-mean-field case when there is a poor initialization of Y0 that is too distant from the so-
lution. Such problems have not been experienced in the mean-field case. To mitigate these
convergence issues and ensure the reliability of the global learning algorithm, the control
learning by policy iteration, as presented in [20], can be employed to verify convergence.
This is particularly relevant when the loss of the global learning algorithm does not tend
to zero as the number of time steps increases.

Finally, extending the bin method to dimension 3 is currently out of reach. The use of
cylinder networks in higher dimensions would be possible if an effective way could be
found to generate distributions that avoid bin sampling.
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