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Abstract. In this paper, we derive a class of backward stochastic differential equations (BSDEs) for infinite-
dimensionally coupled nonlinear parabolic partial differential equations, thereby extending the deep BSDE
method. In addition, we introduce a class of polymer dynamics models that accompany polymerization and
depolymerization reactions, and derive the corresponding Fokker-Planck equations and Feynman-Kac equa-
tions. Due to chemical reactions, the system exhibits a Brownian yet non-Gaussian phenomenon, and the
resulting equations are infinitely dimensionally coupled. We solve these equations numerically through our
new deep BSDE method, and also solve a class of high-dimensional nonlinear equations, which verifies the
effectiveness and shows approximation accuracy of the algorithm.
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1 Introduction

In recent years, the diffusion phenomenon with non-Gaussian shape in complex systems
has been gradually discovered experimentally, e.g. microbeads in lipid tubes [36], net-
works [37] or in a matrix of micropillars [4]. More examples include the movement of
tracers in colloids, polymeric, and active suspensions [39], and the motion of individu-
als in heterogeneous populations such as nematodes [20]. This paper develops the deep
BSDE method to model and simulate this kind of polymer dynamics.

More concretely, we focus on the diffusion behavior of a class of polymeric microparti-
cles that accompany polymerization and depolymerization chemistry. It is shown that the
polymerization and depolymerization of molecules is the natural basis of Brownian yet
non-Gaussian diffusion of the center of mass (CM) [1]. The diffusivity D of the CM is af-
fected by the molecular size N, and the molecular size is determined by the chemical reac-
tion and changes randomly, so the diffusivity D(N(t)) becomes a stochastic process. Such
random diffusivity leads to Brownian yet non-Gaussian diffusion. Further, reference [27]
discusses the motion of a polymer in a chemostatted monomer bath while the monomer
concentration in the bath changes. Reference [41] derives the Fokker-Planck equations for
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CM and the Feynman-Kac equations through subordination technique [3}/5,[13]. Since the
size of the polymer particle is a discrete variable, the resulting equation is of bivariate form

%u(n, x,t) = Tou(n, x, t) + %Tr(mrT(n, x,t)(Hessy)u(n, x,t))

+ Vau(n, x,t) - u(n,x, t) + f(t,n,x,u(n, x,t), (UTqu) (n,x,1)) (1.1)

with the initial condition u(n, x,0) = g(n,x), here T, is an operator with respect to the
discrete variable n. If we consider n as a state parameter, then Eq. (II) can be seen as
an infinite-dimensionally coupled system, the way of coupling depends on the opera-
tor T,.

With the growth of data resources and computing power, deep learning has been be-
coming an important methodology of our research. In recent years, a large number of deep
learning-based partial differential equation (PDE) solvers have been developed, most of
which are inspired by traditional methods. But unlike traditional methods, learning-based
methods reduce the requirements for meshing and directly use neural networks as basis
functions. These improvements allow us to avoid various complex problems encoun-
tered by traditional methods when solving PDEs. For example, the deep Ritz method [12]
is a deep learning method based on the variational principle, which uses deep learn-
ing to solve the variational problem corresponding to PDEs. Least squares-based deep
learning methods include deep Galerkin method [34] and physics-informed neural net-
works [32], which train models by minimizing the squared residuals of PDEs. Physics-
informed neural networks also has a discrete-time version, which is based on the Runge-
Kutta method. Weak adversarial networks [40] provide a method for solving the weak
formulations of high-dimensional partial differential equations through adversarial learn-
ing. E et al. [11,/18] propose a deep learning method for solving parabolic PDEs based on
BSDEs, called the deep BSDE method. References [15,[19] provide posterior estimates of
the deep BSDE method.

The main contributions of this paper are as follows. Defining

[a(m)(f(n 1) — fn) + B(m) (Fn— 1) — (), n=1,
Ef(n)_{w(o)(f(l)—f(o))f n_o, 12

where a(n) and B(n) are known functions, we derive the BSDEs of Eq. by construct-
ing a stochastic process X(t) coupled with the birth-death process N(t) and extend the
deep BSDE method (see Section[2). In addition, we present a class of applications of our
new method in solving polymer dynamics problems. Specifically, we model a class of
polymer particle diffusion dynamics accompanied by polymerization and depolymeriza-
tion reactions, and derive the forward (backward) Fokker-Planck equations and the cor-
responding Feynman-Kac equations (see Section[3)). To solve the Feynman-Kac equations,
we extend the deep BSDE method to the space of frequency domain (see Section ). On
the aspect of the deep BSDE method, the main distinction of this work from [18] can be
summarized as follows:

(i) The process considered in this paper is the coupling of the diffusion process with the
jumping one, instead of the pure diffusion process.
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