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Abstract. This paper presents a mathematical analysis of ODE-Net, a continuum model of deep neural net-
works (DNNs). In recent years, machine learning researchers have introduced ideas of replacing the deep
structure of DNNs with ODEs as a continuum limit. These studies regard the “learning” of ODE-Net as the
minimization of a “loss” constrained by a parametric ODE. Although the existence of a minimizer for this
minimization problem needs to be assumed, only a few studies have investigated the existence analytically
in detail. In the present paper, the existence of a minimizer is discussed based on a formulation of ODE-Net
as a measure-theoretic mean-field optimal control problem. The existence result is proved when a neural
network describing a vector field of ODE-Net is linear with respect to learnable parameters. The proof em-
ploys the measure-theoretic formulation combined with the direct method of calculus of variations. Secondly,
an idealized minimization problem is proposed to remove the above linearity assumption. Such a problem is
inspired by a kinetic regularization associated with the Benamou-Brenier formula and universal approxima-
tion theorems for neural networks.
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1 Introduction

Deep neural networks, or deep learning, now constitute a core of artificial intelligence
technology, but their theoretical inner mechanisms have yet to be explored. In particular,
there have been few theoretical contributions regarding “learning” DNN5s, despite prac-
tical demands for them, where “learning” is, broadly speaking, to minimize the so-called
“loss” by optimizing a parameter 6 of DNNS.

Our research aims to establish a well-posed mathematical formulation of the learning.
To achieve this aim, some researchers have brought languages of dynamical systems and
differential equations into DNNSs, for example, in [22,27,/54]. In short, one can regard
a continuum limit of DNNs in their depth as an ODE. Many researchers have attempted
to dissect DNNs through some ODEs, designated as ODE-Net throughout the paper. For
more information on these attempts, see the survey in Section 2l Based on this survey,
well-posednesses, such as the existence of a minimizer of loss, have not yet been fully
explored in the context of these studies.
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Accordingly, our goal in this paper is to prove the existence of a minimizer for learning
ODE-Net, formulated as a regularized minimization problem constrained by a continuity
equation.

1.1 Target problems and main results

First of all, we are going to study the existence of a minimizer of the following kinetic-
regularized minimization problem.

Problem 1.1 (Kinetic Regularized Learning Problem Constrained by ODE-Net). Let A > 0

and € > 0 be constants, let ) be a subset of R and let v: R? x R” — R?and ¢: R? x ) —
R+ be continuous. Let yg € P.(R? x V) be a given training data. Set

— T A 2, €912
18y = [, e [ (Slote)P+5l0R ) dmrar @)

for u € C([0, T]; (P2(R? x ¥),W,)) and 8 € L2(0, T;R™). Note that v(e,0) € L2(du) is
a vector field on R? for u € P.(R?) and 6 € R™. The learning problem constrained by
ODE-Net is posed as the following constrained minimization problem:

inf{](y,@) ‘ e C([0,T]; (Pa(R x V), Wh)), 6 € L2(0, T;]R’")}
subject to

{Btyt +divy (pe(x,y)o(x,0:) =0, (xv,y) € RYx ), te(0,T),

1.2
Plt|t:0 = Ho, 12

where P;(IRY x )) denotes the set of regular and Borel probability measures compactly
supported on RY x ), (Pz(le x )),W,) denotes the (L2-)Wasserstein space defined in
Section3.2}, C([0, T]; (P(R? x )), W,)) denotes the set of curves which is continuous with
respect to the Wasserstein topology (see also Definition3.T), and

ue C([0,T]; (Pa(RY x V), W,))
is supposed to solve the Eq. (L.2) in the distributional sense of Definition[3.2]

Remark 1.1. In Problem the ODE-Net corresponds to the continuity equation (1.2)
with a parameter 6;, and the learning to the minimization of a functional | with respect to
a parameter 6 and a solution y; to ODE (L.2).

The first term in measures the so-called loss. The second term in is called
a “kinetic regularization” in [25] because it represents the kinetic energy when v(e,0)
(6 € R™) is regarded as a velocity field on R?. By letting this kinetic energy be as small as
possible, we could control the velocity field so that the support of the solution p; to
does not change wildly. The third term is often called an L?-regularization, which is fa-
miliar with the well-known Ridge regression.

In order to prove existence of a minimizer for Problem[L.1] we shall impose the follow-
ing assumptions on ), ¢ and v.
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