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Abstract. This paper presents a mathematical analysis of ODE-Net, a continuum model of deep neural net-
works (DNNs). In recent years, machine learning researchers have introduced ideas of replacing the deep
structure of DNNs with ODEs as a continuum limit. These studies regard the “learning” of ODE-Net as the
minimization of a “loss” constrained by a parametric ODE. Although the existence of a minimizer for this
minimization problem needs to be assumed, only a few studies have investigated the existence analytically
in detail. In the present paper, the existence of a minimizer is discussed based on a formulation of ODE-Net
as a measure-theoretic mean-field optimal control problem. The existence result is proved when a neural
network describing a vector field of ODE-Net is linear with respect to learnable parameters. The proof em-
ploys the measure-theoretic formulation combined with the direct method of calculus of variations. Secondly,
an idealized minimization problem is proposed to remove the above linearity assumption. Such a problem is
inspired by a kinetic regularization associated with the Benamou-Brenier formula and universal approxima-
tion theorems for neural networks.
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1 Introduction

Deep neural networks, or deep learning, now constitute a core of artificial intelligence
technology, but their theoretical inner mechanisms have yet to be explored. In particular,
there have been few theoretical contributions regarding “learning” DNNs, despite prac-
tical demands for them, where “learning” is, broadly speaking, to minimize the so-called
“loss” by optimizing a parameter θ of DNNs.

Our research aims to establish a well-posed mathematical formulation of the learning.
To achieve this aim, some researchers have brought languages of dynamical systems and
differential equations into DNNs, for example, in [22, 27, 54]. In short, one can regard
a continuum limit of DNNs in their depth as an ODE. Many researchers have attempted
to dissect DNNs through some ODEs, designated as ODE-Net throughout the paper. For
more information on these attempts, see the survey in Section 2. Based on this survey,
well-posednesses, such as the existence of a minimizer of loss, have not yet been fully
explored in the context of these studies.
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Accordingly, our goal in this paper is to prove the existence of a minimizer for learning
ODE-Net, formulated as a regularized minimization problem constrained by a continuity
equation.

1.1 Target problems and main results

First of all, we are going to study the existence of a minimizer of the following kinetic-
regularized minimization problem.

Problem 1.1 (Kinetic Regularized Learning Problem Constrained by ODE-Net). Let λ ≥ 0

and ǫ > 0 be constants, let Y be a subset of R
d and let v : R

d ×R
m → R

d and ℓ : R
d ×Y →

R+ be continuous. Let µ0 ∈ Pc(Rd ×Y) be a given training data. Set

J(µ, θ) :=
∫

Rd×Y
ℓdµT +

∫ T

0

∫

Rd×Y

(
λ

2
|v(x, θt)|2 +

ǫ

2
|θt|2

)
dµt(x, y)dt (1.1)

for µ ∈ C([0, T]; (P2(R
d × Y), W2)) and θ ∈ L2(0, T; R

m). Note that v(•, θ) ∈ L2(dµ) is

a vector field on R
d for µ ∈ Pc(Rd) and θ ∈ R

m. The learning problem constrained by
ODE-Net is posed as the following constrained minimization problem:

inf
{

J(µ, θ) µ ∈ C
(
[0, T];

(
P2(R

d ×Y), W2

))
, θ ∈ L2(0, T; R

m)
}

subject to
{

∂tµt + divx

(
µt(x, y)v(x, θt)

)
= 0, (x, y) ∈ R

d ×Y , t ∈ (0, T),

µt|t=0 = µ0,
(1.2)

where Pc(R
d × Y) denotes the set of regular and Borel probability measures compactly

supported on R
d × Y , (P2(R

d × Y), W2) denotes the (L2-)Wasserstein space defined in

Section 3.2, C([0, T]; (P(Rd ×Y), W2)) denotes the set of curves which is continuous with
respect to the Wasserstein topology (see also Definition 3.1), and

µ ∈ C
(
[0, T];

(
P2(R

d ×Y), W2

))

is supposed to solve the Eq. (1.2) in the distributional sense of Definition 3.2.

Remark 1.1. In Problem 1.1, the ODE-Net corresponds to the continuity equation (1.2)
with a parameter θt, and the learning to the minimization of a functional J with respect to
a parameter θt and a solution µt to ODE (1.2).

The first term in (1.1) measures the so-called loss. The second term in (1.1) is called
a “kinetic regularization” in [25] because it represents the kinetic energy when v(•, θ)
(θ ∈ R

m) is regarded as a velocity field on R
d. By letting this kinetic energy be as small as

possible, we could control the velocity field so that the support of the solution µt to (1.2)
does not change wildly. The third term is often called an L2-regularization, which is fa-
miliar with the well-known Ridge regression.

In order to prove existence of a minimizer for Problem 1.1, we shall impose the follow-
ing assumptions on Y , ℓ and v.
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