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Abstract. We present the development and analysis of a reinforcement learning algorithm designed to solve
continuous-space mean field game (MFG) and mean field control (MFC) problems in a unified manner. The
proposed approach pairs the actor-critic (AC) paradigm with a representation of the mean field distribution
via a parameterized score function, which can be efficiently updated in an online fashion, and uses Langevin
dynamics to obtain samples from the resulting distribution. The AC agent and the score function are updated
iteratively to converge, either to the MFG equilibrium or the MFC optimum for a given mean field problem,
depending on the choice of learning rates. A straightforward modification of the algorithm allows us to
solve mixed mean field control games. The performance of our algorithm is evaluated using linear-quadratic
benchmarks in the asymptotic infinite horizon framework.
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1 Introduction

Mean field games and mean field control – collectively dubbed mean field problems –
are mathematical frameworks used to model and analyze the behavior and optimiza-
tion of large-scale, interacting agents in settings with varying degrees of cooperation.
Since the early 2000s, with the seminal works [21, 28], MFGs have been used to study
the equilibrium strategies of competitive agents in a large population, accounting for the
aggregate behavior of the other agents. Alternately, MFC, which is equivalent to optimal
control of McKean-Vlasov SDEs [31, 32], focuses on optimizing the behavior of a central
decision-maker controlling the population in a cooperative fashion. Cast in the language
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of stochastic optimal control, both frameworks center on finding an optimal control αt,
which minimizes a cost functional objective J(α) subject to given state dynamics in the
form of a stochastic differential equation. What distinguishes mean field problems from
classical optimal control is the presence of the mean field distribution µt, which may influ-
ence both the cost functional and the state dynamics. The mean field is characterized by
a flow of probability measures that emulates the effect of a large number of participants
whose individual states are negligible but whose influence appears in the aggregate. In
this setting, the state process Xt models a representative player from the crowd in the
sense that the mean field should ultimately be the law of the state process: µt = L(Xt).
The distinction between MFG and MFC, a competitive game versus a cooperative gover-
nance, is made rigorous by precisely how we enforce the relationship between µt and Xt.
We will address the details of the MFG/MFC dichotomy in greater depth in Section 2.

MFG and MFC theories have been instrumental in understanding and solving prob-
lems in a wide range of disciplines, such as economics, social sciences, biology, and en-
gineering. In finance, mean field problems have been applied to model and analyze the
behavior of investors and markets. For instance, MFG can be used to model the trading
strategies of individual investors in a financial market, taking into account the impact of
the overall market dynamics. Similarly, MFC can help optimize the management of large
portfolios, where the central decision-maker seeks to maximize returns while considering
the average behavior of other investors. For in-depth examples of mean field problems in
finance, we refer the reader to [10–12].

Although traditional numerical methods for solving MFG and MFC problems have
proceeded along two avenues, solving a pair of coupled partial differential equations
(PDE) [13] or a forward-backward system of stochastic differential equations (FBSDE)
[6], there has been growing interest in solving mean field problems in a model-free way
[3, 4, 14, 19, 29, 34]. With this in mind, we turn to reinforcement learning (RL), an area
of machine learning that trains an agent to make optimal decisions through interactions
with a “black box” environment. RL can be employed to solve complex problems, such as
those found in finance, traffic control, and energy management, in a model-free manner.
A key feature of RL is its ability to learn from trial-and-error experiences, refining decision-
making policies to maximize cumulative rewards. Temporal difference (TD) methods [37]
are a class of RL algorithms that are particularly well-suited for this purpose. They es-
timate value functions by updating estimates based on differences between successive
time steps, combining the benefits of both dynamic programming and Monte Carlo ap-
proaches for efficient learning without requiring a complete model of the environment.
For a comprehensive overview of the foundations and numerous families of RL strate-
gies, consult [38]. Actor-critic (AC) algorithms – the modern incarnations of which were
introduced in [17] – are a popular subclass of TD methods where separate components,
the actor and the critic, are used to update estimates of both a policy and a value function.
The actor is responsible for selecting actions based on the current policy, while the critic
evaluates the chosen actions and provides feedback to update the policy. By combining
the strengths of both policy- and value-based approaches, AC algorithms achieve more
stable and efficient learning.
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