
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Learning a Sparse Representation of Barron Functions

with the Inverse Scale Space Flow

Tjeerd Jan Heeringa * 1, Tim Roith 2, Christoph Brune 1, and Martin Burger 2,3

1Mathematics of Imaging & AI, University of Twente, Enschede, The Netherlands.
2Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany.
3Fachbereich Mathematik, Universität Hamburg, Hamburg 20146, Germany.

Abstract. This paper presents a method for finding a sparse representation of Barron functions. Specifically,
given an L2 function f , the inverse scale space flow is used to find a sparse measure µ minimising the L2 loss
between the Barron function associated to the measure µ and the function f . The convergence properties of
this method are analysed in an ideal setting and in the cases of measurement noise and sampling bias. In
an ideal setting the objective decreases strictly monotone in time to a minimizer with O(1/t), and in the case
of measurement noise or sampling bias the optimum is achieved up to a multiplicative or additive constant.
This convergence is preserved on discretization of the parameter space, and the minimizers on increasingly
fine discretizations converge to the optimum on the full parameter space.

Keywords:
Barron Space,
Bregman Iterations,
Sparse Neural Networks,
Inverse Scale Space,
Optimization.

Article Info.:
Volume: 4
Number: 1
Pages: 48 - 88
Date: March/2025
doi.org/10.4208/jml.240123

Article History:
Received: 23/01/2024
Accepted: 25/12/2024

Communicated by:
Chenglong Bao

1 Introduction

Most neural networks contain a subnetwork with fewer parameters that performs equally
well [36], and some of these subnetworks have been found to generalise equally or even
better than their dense counterparts [28, 29]. However, it is a priori hard to determine
which parameters of the network will be part of the subnetwork. Hence, various ap-
proaches have been developed for finding well performing sparse neural network. They
fall roughly in three categories. The first is to add a term to the loss or regularizer that
promotes sparsity. An example of this would be the least absolute shrinkage and selection
operator (LASSO), in which a ℓ1 regularizer is added [39]. The second is to train a net-
work first and prune it afterwards, meaning weights are reduced with as little as possible
influence on the performance [31]. The third is to start with a sparse architecture, and add
or remove neurons during training [22].

One of the methods, which starts from a sparse architecture, is based on the Bregman
iteration [33]. This method has been introduced and thoroughly analysed for imaging
and compressed sensing [15, 17, 44]. The method works in these settings by progressively
adding more detail to the reconstructed images and signals, respectively. A limitation
of the original method is that it requires that often requires the problem to be convex.
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However, adaptations of the method, e.g. the linearized variant in [5, 13], where the loss
is replaced by a first order approximation, allows for a successful application to neural
networks. A major success of this method is that it is able to find an auto-encoder without
ever explicitly defining an auto-encoder like architecture [12]. This shows that it has major
potential for automatic neural network architecture design tasks.

1.1 Related work

Bregman iterations were introduced in [33] and further developed and analysed in [1,6,15,
17–19,43,44] as an algorithm to solve sparsity promoting regularisation tasks in computer
vision. Linearized Bregman iterations as introduced in [18, 44] can be seen as a general-
ization of the mirror descent algorithm [4,32] to the non-differentiable, convex case. More
recently, variants of the original algorithm have been applied in the context of machine
learning, see, e.g. [12, 13, 40, 41].

Bregman iterations are the implicit Euler discretization of an inverse scale space flow.
Going to the continuous limit has helped to find easy implementations for relatively com-
plex functionals like the total variation functional, and has helped to obtain well-justified
and simple stopping criteria [14]. In the finite-dimensional case of sparse regularization
(and further generalizations) an exact time discretization can be found, which leads to
efficient methods [15, 30]. We refer to [6] for recent overview.

Similar to inverse scale space flow being the continuous limit of the Bregman iterations,
we have that the Barron spaces are the continuous limit of shallow neural network. It was
proven that Barron functions have bounded point evaluations [2,38], Barron functions can

be approximated in Lp with rate O(m−1/p) [26], Barron spaces have a represented theo-
rem [34] and that Barron spaces are a kind of integral reproducing kernel Banach spaces
(RKBS), a Banach space analogue to reproducing kernel Hilbert spaces (RKHS) [2]. The
spaces are parametrized by the activation function of the networks. The Barron spaces
associated to most of the commonly used non-periodic activation are embedded in the
Barron space with ReLU as activation function [27]. This Barron space together with the
Barron spaces associated to the rectified power unit (RePU), the higher-order generaliza-
tion of the ReLU, are strongly related to bounded variation (BV) spaces [26, 34].

A fundamental open question in machine learning is how to find the best function
representing your data. For Barron spaces, this means finding the best measure µ repre-
senting the Barron function f . Since the relation between µ and f is linear, this leads to
a convex minimization problem. Based on an alternative representation of Barron func-
tions in probability space, the authors in [42] formulated a Wasserstein gradient flow for
this problem based on the ideas of [21]. Under several assumptions, including omnidi-
rectional initial conditions and satisfying the Morse-Sard property, this leads to a unique
solution π [42]. However, not all Barron functions satisfy the Morse-Sard property, plac-
ing a limit on the functions that can be represented with this approach [42]. Although this
unique solution π represents the Barron function f , it is not necessarily the probability
measure for f with the smallest semi-norm. In order to find sparse neural networks, there
is a need for a method that minimizes this semi-norm as well.
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