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Convergence of Stochastic Gradient Descent under

a Local Łojasiewicz Condition for Deep Neural Networks
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Abstract. We study the convergence of stochastic gradient descent (SGD) for non-convex objective functions.
We establish the local convergence with positive probability under the local Łojasiewicz condition introduced
by Chatterjee [arXiv:2203.16462, 2022] and an additional local structural assumption of the loss function land-
scape. A key component of our proof is to ensure that the whole trajectories of SGD stay inside the local
region with a positive probability. We also provide examples of neural networks with finite widths such that
our assumptions hold.
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1 Introduction

The stochastic gradient descent and its variants are widely applied in machine learning
problems due to its computational efficiency and generalization performance. A typical
empirical loss function for the training writes as

F(θ) = Eξ∼D[ f (θ; ξ)], (1.1)

where ξ denotes the random sampling from the training data set following the distribu-
tion D. A standard SGD iteration to train parameters θ ∈ R

n is of the form

θk+1 = θk − ηk∇ f (θk ; ξk). (1.2)

Here, the step size ηk can be either a fixed constant or iteration-adapted, and ∇ f (θk; ξk)
is a unbiased stochastic estimate of the gradient ∇F(θk), induced by the sampling of the
dataset.

The convergence of SGD for convex objective functions has been well established, and
we give an incomplete list of works [4, 6, 7, 18, 23, 29] here for reference. Since SGD algo-
rithms in practice are often applied to non-convex problems in machine learning such as
complex neural networks and demonstrate great empirical success, much attention has
been drawn to study the SGD in non-convex optimization [12, 19, 31]. Compared with
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convex optimization, the behavior of stochastic gradient algorithms over the non-convex
landscape is unfortunately much less understood. It is natural to investigate whether
stochastic gradient algorithms converge through the training, and what minimum they
converge to in non-convex problems. However, these questions are noticeably challeng-
ing since the trajectory of stochastic iterates is more difficult to track due to the noise. Most
available results are limited. For example, works such as [1,2,16,38] provide convergence
guarantees to a critical point in terms of quantifying the vanishing of ∇F, but little infor-
mation is given on what critical points that SGD converges to. Many convergence results
are based on global assumptions on the objective function, including the global Poylak-
Łojasiewicz condition [24, 25], the global quasar-convexity [17], or assumptions of weak
convexity and global boundedness of iterates [14, 37]. Those global assumptions are often
not realistic, at least they cannot cover general multi-modal landscapes.

More specifically for optimization problems for deep neural network architectures,
most convergence results are obtained in the overparametrized regime, which means that
the number of neurons grow at least polynomially with respect to the sample size. For
example, works including [10,20,36,40] consider wide neural networks, which essentially
linearize the problem by extremely large widths. Particularly in such settings, Poylak-
Łojasiewicz type conditions are shown to be satisfied, and they thus prove convergence
with linear rates [3, 25]. Let us also mention convergence results of shallow neural net-
works in the mean field regime [9, 27, 32], while the convergence has not been fully estab-
lished for deep neural networks.

Convergence results are very limited for neural networks with finite widths and depths,
and we refer to [8, 21, 26] for recent progresses in terms of the convergence of gradi-
ent descent in such scenario. In particular, [8] constructs feedforward neural networks
with smooth and strictly increasing activation functions, with the input dimension being
greater than or equal to the number of data points. Such neural networks satisfy a local
version of the Łojasiewicz inequality, and the convergence of gradient descent to a global
minimum given appropriate initialization are fully analyzed. In this work, our goal is to
extend the convergence result in [8] to stochastic gradient descent, with minimal addi-
tional assumptions added to the loss function F(θ).

In this work, we extend Chatterjee’s convergence result to SGD for non-convex ob-
jective functions with minimal additional assumptions applicable to finitely wide neural
networks. Our main result Theorem 3.1 asserts that, with a positive probability, SGD con-
verges to a zero minimum within a locally initialized region satisfying the Łojasiewicz
condition (Assumption 1). In particular, our proof relies on assuming that the noise scales
with the objective function (Assumption 4), and in the end we provide an negative argu-
ment showing that convergence with the bounded noise and Robbins-Monro type step
sizes can fail in specific scenarios (Theorem 4.1).

Notation

Throughout the note, | · | denotes the Euclidean norm, B(θ, r) denotes the Euclidean ball
of radius r centered at θ. Unless otherwise specified, the expectation E = Eξ∼D, and the
gradients ∇ = ∇θ .
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