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Abstract. Diffusion models have achieved huge empirical success in data generation tasks. Recently, some
efforts have been made to adapt the framework of diffusion models to discrete state space, providing a more
natural approach for modeling intrinsically discrete data, such as language and graphs. This is achieved by
formulating both the forward noising process and the corresponding reversed process as continuous time
Markov chains. In this paper, we investigate the theoretical properties of the discrete diffusion model. Specif-
ically, we introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing
transitions on random time points. Under reasonable assumptions on the learning of the discrete score func-
tion, we derive total variation distance and Kullback–Leibler divergence guarantees for sampling from any
distribution on a hypercube. Our results align with state-of-the-art achievements for diffusion models in R

d

and further underscore the advantages of discrete diffusion models in comparison to the R
d setting.
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1 Introduction

Generative modeling is one of the central tasks in machine learning, which aims to learn
a probability distribution from data and generate data from the learned distribution. The
diffusion model has emerged as a powerful and versatile framework in generative model-
ing, achieving state-of-the-art performance in a variety of data generation tasks, including
image generation [3, 28], audio generation [33], video generation [17, 43], text-to-image
synthesis [30, 31], and computational biology [15]. The general framework of the score-
based generative model involves:

1) defining a forward noising process to gradually diffuse the data distribution to some
simple distribution (like standard Gaussian);

2) learning a reversed process to denoising the simple distribution to the data distribution
by estimating the score functions of the forward diffusion process.

Works on the diffusion model focus on the forward processes defined in the Euclidean

state space R
d. In such scenarios, an ideal choice of the forward process is the Ornstein-

Uhlenbeck (OU) process, which is driven by a stochastic differential equation (SDE) on R
d,
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and the corresponding reversed process is also given by an SDE. Nevertheless, certain data
generation tasks present an intrinsic characteristic of discrete data. For example, natural
language processing operates within a discrete token space, computer vision involves dis-
crete representations of images, and molecular graph modeling engages with graph data
in a discrete structure [18,19,44]. Thus, it is more natural to use diffusion processes on the
discrete state space to model these discrete data distributions.

To this end, some recent works [5, 7, 25, 27, 32] have introduced a framework for diffu-
sion models in discrete state spaces. This framework notably utilizes a continuous-time
Markov chain (CTMC) in the discrete state space for the forward process, and the corre-
sponding reverse process is also a CTMC. Moreover, mirroring the concept of score estima-

tion in diffusion models on R
d, they proposed a discrete score function given by the ratios

of probability mass on different states, and the score entropy loss as a new score matching
objective that is derived from Kullback–Leibler (KL) divergence divergence between the
path measures of the forward and the reversed process. Combining the learning of the
discrete score function through minimizing the score entropy and the sampling from the
learned reversed process, a completed procedure for the diffusion model on discrete state
space has been established.

However, despite the potential advantage of the discrete diffusion model, unlike the ex-
tensively studied SDE framework, the theoretical understanding of the CTMC framework
has not been built. A line of works [4, 8, 10, 21–23] concentrated on the theory of diffusion

model on R
d. Generally speaking, the established theoretical results can be summarized

as follows:

• Sampling is as easy as learning the score: for arbitrary data distribution, suppose one
can estimate the score function at multiple noise levels, then one can approximately
sample from the data distribution.

• Quantitatively, under an L2 accurate score estimator on the forward process,
O(d log(1/δ)/ǫ2) iterations suffices to output a distribution that is ǫ2-close in KL
divergence to a distribution pδ, where pδ is a variance-δ Gaussian perturbation of the
data distribution.

• There are three sources of error in the diffusion model: 1) the error from the in-
exact score estimator, 2) the error from insufficient mixing of the forward process,
and 3) the discretization error. The discretization error causes the key challenges
in the analysis due to the error propagation in the numerical simulation of a non-
contractive dynamic.

In this paper, we take a step toward the theory of diffusion model in the CTMC framework
and aim to understand how the theoretical property of discrete diffusion compares to the

established theory for diffusion model on R
d. Our results suggest that:

• One can implement the reversed CTMC in an exact way, i.e. without discretiza-
tion error, through an algorithm based on the uniformization technique [12, 14, 40].
This presents a surprising advantage of the CTMC framework compared to the SDE
framework, where discrete errors are significant in the analysis.
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