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Abstract. Diffusion models have achieved huge empirical success in data generation tasks. Recently, some
efforts have been made to adapt the framework of diffusion models to discrete state space, providing a more
natural approach for modeling intrinsically discrete data, such as language and graphs. This is achieved by
formulating both the forward noising process and the corresponding reversed process as continuous time
Markov chains. In this paper, we investigate the theoretical properties of the discrete diffusion model. Specif-
ically, we introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing
transitions on random time points. Under reasonable assumptions on the learning of the discrete score func-
tion, we derive total variation distance and Kullback–Leibler divergence guarantees for sampling from any
distribution on a hypercube. Our results align with state-of-the-art achievements for diffusion models in R

d

and further underscore the advantages of discrete diffusion models in comparison to the R
d setting.
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1 Introduction

Generative modeling is one of the central tasks in machine learning, which aims to learn
a probability distribution from data and generate data from the learned distribution. The
diffusion model has emerged as a powerful and versatile framework in generative model-
ing, achieving state-of-the-art performance in a variety of data generation tasks, including
image generation [3, 28], audio generation [33], video generation [17, 43], text-to-image
synthesis [30, 31], and computational biology [15]. The general framework of the score-
based generative model involves:

1) defining a forward noising process to gradually diffuse the data distribution to some
simple distribution (like standard Gaussian);

2) learning a reversed process to denoising the simple distribution to the data distribution
by estimating the score functions of the forward diffusion process.

Works on the diffusion model focus on the forward processes defined in the Euclidean

state space R
d. In such scenarios, an ideal choice of the forward process is the Ornstein-

Uhlenbeck (OU) process, which is driven by a stochastic differential equation (SDE) on R
d,
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and the corresponding reversed process is also given by an SDE. Nevertheless, certain data
generation tasks present an intrinsic characteristic of discrete data. For example, natural
language processing operates within a discrete token space, computer vision involves dis-
crete representations of images, and molecular graph modeling engages with graph data
in a discrete structure [18,19,44]. Thus, it is more natural to use diffusion processes on the
discrete state space to model these discrete data distributions.

To this end, some recent works [5, 7, 25, 27, 32] have introduced a framework for diffu-
sion models in discrete state spaces. This framework notably utilizes a continuous-time
Markov chain (CTMC) in the discrete state space for the forward process, and the corre-
sponding reverse process is also a CTMC. Moreover, mirroring the concept of score estima-

tion in diffusion models on R
d, they proposed a discrete score function given by the ratios

of probability mass on different states, and the score entropy loss as a new score matching
objective that is derived from Kullback–Leibler (KL) divergence divergence between the
path measures of the forward and the reversed process. Combining the learning of the
discrete score function through minimizing the score entropy and the sampling from the
learned reversed process, a completed procedure for the diffusion model on discrete state
space has been established.

However, despite the potential advantage of the discrete diffusion model, unlike the ex-
tensively studied SDE framework, the theoretical understanding of the CTMC framework
has not been built. A line of works [4, 8, 10, 21–23] concentrated on the theory of diffusion

model on R
d. Generally speaking, the established theoretical results can be summarized

as follows:

• Sampling is as easy as learning the score: for arbitrary data distribution, suppose one
can estimate the score function at multiple noise levels, then one can approximately
sample from the data distribution.

• Quantitatively, under an L2 accurate score estimator on the forward process,
O(d log(1/δ)/ǫ2) iterations suffices to output a distribution that is ǫ2-close in KL
divergence to a distribution pδ, where pδ is a variance-δ Gaussian perturbation of the
data distribution.

• There are three sources of error in the diffusion model: 1) the error from the in-
exact score estimator, 2) the error from insufficient mixing of the forward process,
and 3) the discretization error. The discretization error causes the key challenges
in the analysis due to the error propagation in the numerical simulation of a non-
contractive dynamic.

In this paper, we take a step toward the theory of diffusion model in the CTMC framework
and aim to understand how the theoretical property of discrete diffusion compares to the

established theory for diffusion model on R
d. Our results suggest that:

• One can implement the reversed CTMC in an exact way, i.e. without discretiza-
tion error, through an algorithm based on the uniformization technique [12, 14, 40].
This presents a surprising advantage of the CTMC framework compared to the SDE
framework, where discrete errors are significant in the analysis.
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• The proposed algorithm is guaranteed to be efficient by our theoretical analysis.
Quantitatively, assuming an ǫ-error bound on the score entropy loss, our purposed
algorithm requires O(d log(d/ǫδ)) steps to reach a distribution ǫ-close in KL diver-
gence to a distribution pδ, where pδ is a δ-perturbation of the data distribution in TV
distance. Combining the two errors, we also get a TV distance guarantee for sam-
pling from the data distribution. Thus, we obtain a logarithm dependence on ǫ for
the discrete diffusion model, in contrast to the ǫ−2 dependence for the SDE frame-
work.

Organization of this paper. In Section 2, we introduce some preliminary background
on CTMC and the uniformization technique for CTMC. In Section 3, we introduce the
framework of the diffusion model using CTMC on discrete state space. In Section 4, we
propose our new algorithm for numerical simulation of the reversed CTMC process and
analyze the complexity and error of the proposed algorithm.

1.1 Related works

Diffusion models on discrete state space. In the initial stages of development, the dif-
fusion model was formulated as a discrete-time Markov process. It was first introduced
in [35], marking the pioneering work in applying the diffusion process for data genera-
tion tasks. Although the focus has primarily been on continuous-space formulations, the
discrete-time and discrete-space framework of the diffusion model was also described in
the initial work [35] and then further explored in [2, 18, 34]. Some works, such as [29, 36],

tackle the discrete data by embedding it to R
d and employing the continuous-space diffu-

sion model framework with dequantization techniques. This approach has also been pop-
ular in other generative models like variational autoencoders (VAE) and auto-regressive
models.

A significant breakthrough in diffusion models was achieved when Song et al. [36, 38]
introduced a continuous framework through stochastic differential equations. As a dis-
crete analogy of the SDE framework, [7] firstly established the CTMC framework for dif-
fusion models on discrete state space. This paper introduces an evidence lower bound
objective (ELBO) derived from the KL divergence between path measures and proposes
multiple numerical methods for simulating the reversed process, including τ-leaping and
prediction-correction. [27] proposed the concrete score matching method to learn the prob-
ability ratio term in the reversed CTMC. However, this objective does not align with the
path-KL and might lack stability in practice. [39] alternatively derive the score-matching
objective from the conditional marginal distributions. [32] proposed a different, forward
process called blackout diffusion, which transforms data to an empty set instead of uni-
form distribution. [25,44] applies the continuous-time discrete diffusion model to generate
language data and, in particular, [25] scale the method to GPT2 data, demonstrating its po-
tential effectiveness in handling large datasets.

Theory of diffusion models. This paper is closely related to a series of works [4, 8, 10,

13, 21–23] focused on the theoretical analysis of diffusion models in R
d. Specifically, these

studies seek to answer the following question: given an L2-accurate score estimator, how



J. Mach. Learn., 4(2):108-127 111

closely does the distribution generated by the reverse SDE with the score estimator, in
place of the actual score function, and with appropriate discretization, approximate the
data distribution? This question was first addressed for smooth and isoperimetric distri-
butions in [21], followed by a reduction of the isoperimetry assumption in [10] and the
smoothness assumption in [8,22]. The state-of-art result, which is applicable to any distri-
bution and shows a nearly linear dependence on the dimension d, is provided in [4]. In
this paper, we answer this question for the discrete diffusion model. Our results match

the state-of-the-art theory in [4] for the R
d setting, applying to any distribution on the

hypercube and exhibiting a nearly linear dependence on d.
[7] also provides an error bound for the discrete diffusion model. However, this anal-

ysis relies on some strong assumptions like the L∞ accuracy of the score estimator and the
bounded probability ratio of the data distribution. In addition, their result also has a sub-
optimal quadratic dependence on the dimension d. In this paper, we will reduce all these
strong assumptions and provide a nearly optimal bound that exhibits a linear dependence
on d up to a logarithmic factor. We are aware that uniformization appeared in the proof
of [7]. However, this work is the first to deploy uniformization as a working algorithm for
discrete diffusion models and prove its efficiency.

In addition, some works focus on other aspects of the theoretical understanding of
diffusion models. For example, [9,23] analyze the (approximately) deterministic algorithm
for the reversed sampling of diffusion model, [16, 24] studies the sample complexity of
learning the score function.

2 Preliminaries on continuous-time Markov chain

Let X be a finite state space with |X | = N. A CTMC (Xt)t≥0 on X is a continuous stochas-
tic process that satisfies the Markov property. In this process, state changes occur based
on an exponential clock associated with each state, with transitions to different states de-
termined by the corresponding transition rates.

Mathematically, a continuous-time Markov chain (Xt)t≥0 on X is characterized by its
infinitesimal generator Q(t) ∈ R

N×N with

Qx,x(t) = − ∑
y 6=x

Qx,y(t).

Let Px,y(s, t) denote the transition kernel of (Xt) from time s to time t, i.e.

P(Xt = y|Xs = x) = Px,y(s, t).

The infinitesimal transitions of the process are determined by the generator through

P(t, t + h) = I + hQ(t) + o(h).

This leads to the Kolmogorov forward equation

dP(s, t)

dt
= P(s, t)Q(t).

In particular, for time-homogeneous cases Q(t) ≡ Q, we have P(s, t) = e(t−s)Q.
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To understand how the process (Xt) can be constructed, let us start with the simple
case that Q is a time-homogeneous generator Q(t) ≡ Q. For each x, y ∈ X , Qx,y ≥ 0 can
be viewed as the transition rate from the state x to the state y and −Qx,x = ∑y Qx,y is the
intensity of the exponential clock for the state x. Starting from a state x ∈ X , the process
transitions after a holding time determined by an Exp(Qx,x) random variable, with the
transition probabilities defined as

P(Xt = y|Xt− = x) = −Qx,y

Qx,x
, ∀ y 6= x.

The time-inhomogeneous case is slightly more complicated. Intuitively, it can be un-
derstood as a time-homogeneous CTMC with a generator Q(t) at each infinitesimal in-
terval [t, t + dt]. So, a natural approach for numerical simulation involves discretizing
the process and simulating the time-homogeneous CTMC within each distinct time inter-
val. However, more sophisticated methods exist for simulating a time-inhomogeneous
CTMC without the need for discretization. This method is known as uniformization. It
decouples the clocks and transition mechanisms to a single Poisson point process, and
a set of Markov transition kernels (P̃(t))t≥0. The intensity of the Poisson point process λ
uniformly bounds all clock intensities Qxx, and the transition kernels are defined by

P̃x,y(t) =















Qx,y(t)

λ
, y 6= x,

1− ∑
y 6=x

Qx,y(t)

λ
, y = x

(2.1)

or in a matrix representation P̃(t) = I + Q(t)/λ. Simulating the CTMC involves chang-
ing the state according to P̃(t) whenever a transition occurs in the Poisson point process.
Formally, we have the following proposition.

Proposition 2.1 (Uniformization of CTMC). Consider a CTMC (Xt) on a finite state space X
with the generator Q(t). Let p(t) be the distribution of the CTMC at time t. Suppose Qx,x(t) ≤ λ
for any x ∈ X and 0 ≤ t ≤ T. Let (P̃(t))t≥0 be the transition kernels given by (2.1). Let
τ1 < τ2 < · · · < τn be the transition times within [0, T] of a Poisson point process with inten-
sity λ, or equivalently, n is drawn from Poisson(λ) and τ1, · · · , τn is sorted i.i.d. samples from
Unif([0, T]). The distribution of XT conditioning on the number of transition n by time T and the
transition times τ1, τ2, · · · , τn is given by XT|(n, τ1, · · · , τn) ∼ p(0)P̃(τ1)P̃(τ2) · · · P̃(τn).

In the time-homogeneous setting Q(t) ≡ Q, Proposition 2.1 can be simply deduced
through a Taylor expansion

p(t) = p(0)eQt = p(0)
∞

∑
n=0

P̃n (λt)n

n!
e−λt,

implying the transition of the CTMC eQt can be executed by applying the transition P̃ for
Poisson(λt) times. For a general setting, an intuitive way to understand the uniformiza-
tion involves approximating the generator Q(t) by a piece-wisely constant function. The
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results of uniformization in the homogeneous setting can be easily adapted to cases with
piece-wise constant Q(t) by the Markov property. Since any general function Q(t) can be
approximated by piece-wise constant function to arbitrary precision, uniformization thus
provides an exact simulation of the time-inhomogeneous CTMC process. A rigorous proof
of this can be found in [41].

In practice, however, simulating CTMC through uniformization may entail substantial
computational costs, as the number of necessary transitions is contingent upon the uni-
form bound imposed on all the clocks. This renders the computation resource-intensive,
especially in scenarios involving stiff problems where Qx,x(t) dramatically changes across
different states x and different times t. Nevertheless, we will demonstrate that, when
applying this method to the discrete diffusion model, we can obtain a provable efficient
algorithm by adaptively selecting the upper bound λ across different time intervals.

3 Framework of discrete diffusion model

3.1 General procedure

The forward and reversed CTMC. Let p(0) be a data distribution on a X . Consider
a forward process (Xt)0≤t≤T defined by a CTMC with a generator Q(t) starting from
X0 ∼ p(0). The distribution of the forward process at time t is denoted by p(t).

As an analogy of the reversed SDE used in diffusion model on R
d [1, 37], we con-

struct a CTMC (X←t )0≤t≤T as a time reversal of (Xt), meaning (X←t )0≤t≤T is equivalent to
(XT−t)0≤t≤T in distribution. As discussed in [5, 7, 25], this time reversal can be achieved
by a CTMC starting from X←0 ∼ p(T) and governed by the generator

Q←x,y(t) := Qy,x(t)
py(t)

px(t)
. (3.1)

One can sample from the data distribution p(0) if it is possible to simulate the reversed
process (X←t ). However, the ratio term py(t)/px(t) in the generator (3.1) is not available.
This term is referred to as the discrete score function. The idea is to parameterize the
discrete score function within a function class, such as neural networks, and learn it from
training data.

Training objectives for learning the discrete score. We denote the discrete score func-
tion as cx,y(t) := py(t)/px(t) and sx,y(t) represents an estimation of cx,y(t) used for sam-

pling. Consider the sampling dynamic (X̂←t )0≤t≤T that is a CTMC with the generator

Q̂←x,y(t) := Qy,x(t)sx,y(t), initiating from a simple distribution γ ≈ p(T). The following

proposition gives an expression of the KL divergence between the true reversed process
(X←t ) and the sampling dynamic (X̂←t ).

Proposition 3.1. Let P
← and P̂

← be the path measure of (X←t ) and (X̂←t ), respectively. We have

KL(P←‖P̂←) = KL(p(T)‖γ) +
∫ T

0
EXt∼p(t)ℓ(cXt

, sXt
)dt, (3.2)
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where

ℓ(cx, sx) = ∑
y 6=x

Qy,x

(

−cx,y(t) + sx,y(t) + cx,y(t) log
cx,y(t)

sx,y(t)

)

.

This is an analogy of the Girsanov theorem for the SDE framework. We defer an intu-
itive derivation to Appendix A.1 and refer to [5, Section A] for rigorous proof. Note that
the first term in the right-hand side of (3.2) is fully characterized by the convergence of
the forward process; thus, our focus should primarily be on the second term for learning
the score function. Omitting the terms that are independent of the score estimator s, we
obtain the implicit score entropy [5, 25]

LISE =
∫ T

0
EXt∼p(t)

[

∑
Y 6=Xt

(

QY,Xt
sXt,Y(t)−QXt ,Y log sY,Xt

(t)
)

]

dt. (3.3)

This objective (3.3) can be optimized by substituting the expectation with an empirical
mean over samples.

For enhanced computational efficiency, a variant of implicit score entropy called the
denoising score entropy is proposed [5, 25]

LDSE =
∫ T

0
EX0∼p(0), Xt∼p(t)

[

∑
Y 6=Xt

QY,Xt

(

sXt,Y(t)−
PX0,Y(0, t)

PX0,Xt
(0, t)

log sXt,Y(t)

)

]

dt, (3.4)

where Px,y(s, t) is the transition kernel of the forward process (Xt). Note that the denoising
score entropy includes a term from the transition kernel of the forward process, implying
that the design of the forward process should facilitate explicit computation of this kernel.
One example is the independent flips on hypercube, which is the main focus of this paper
and will be introduced in Section 3.2.

Note that the implicit score entropy and the denoising score entropy are analogous to
the implicit score matching objective [20] and the denoising score matching objective [42],

respectively, in the setting of a diffusion model on R
d.

3.2 Independent flips on hypercube as forward process

In this section, and throughout the remainder of this paper, we concentrate on a scenario

where the state space is the d-dimensional hypercubeX = {0, 1}d and the forward process
is given by independent flips on each component. This process is formally described as
a CTMC with the generator

Qx,y(t) =











1, d(x, y) = 1,

−d, y = x,

0, otherwise,

(3.5)

where d(x, y) denotes the Hamming distance between x and y. This process has several
nice properties that are critical for the design and analysis of our algorithm in Section 4.
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Explicit formula for the transition kernel. The special structure of the independent flip-
ping process allows us to write the transition kernel explicitly by the following proposi-
tion.

Proposition 3.2. Let Px,y(s, t) be the transition kernel of the CTMC with the generator Q given
in (3.5). Let gw(t) be the discrete heat kernel

gw(t) =
1

2d

d

∏
i=1

(

1 + (−1)wi e−2t
)

, ∀w ∈ {0, 1}d.

Then we have Px,y(s, t) = gy−x(t− s), where the y− x should be understood in modulo 2 sense.

Proof. By utilizing the tensor-product structure of Q, we can write the generator Q as

Q = ∑
d
i=1 Qi, where Qi represents a tensor product of d matrices of size 2 × 2. In this

tensor product, the matrix

A :=

(

−1 1
1 −1

)

occupies the i-th position, while the remaining positions are all identity. By the Kol-
mogorov forward equation, we have

P(s, t) = e(t−s)Q = (e(t−s)A)⊗d =









1 + e−2(t−s)

2

1− e−2(t−s)

2

1− e−2(t−s)

2

1 + e−2(t−s)

2









⊗d

,

giving the expression Px,y(s, t) = gy−x(t− s).

This explicit formula of the transition kernel makes the denoising score entropy (3.4)
tractable and will play an important role in our algorithm proposed in Section 4 for simu-
lating the reversed process.

Convergence of the forward process. In the context of the diffusion model on R
d, the

OU forward process is known to converge exponentially to standard Gaussian, regardless
of the complexity of the data distribution [8,10]. Similarly, in our discrete setting, the inde-
pendent flipping process exhibits an exponential convergence to the uniform distribution

over {0, 1}d. We write this formally in the following proposition.

Proposition 3.3. Let p(t) be the distribution of the forward process with the generator Q given

in (3.5) at time t. Let γ denote the uniform distribution over {0, 1}d. We have

KL
(

p(T)‖γ
)

≤ e−TKL
(

p(0)‖γ
)

. de−T.

The proof is deferred to Appendix A.2. Proposition 3.3 suggests that to make the error
from the insufficient mixing of the forward process less than ǫ, i.e. KL(pT‖γ) ≤ ǫ, we only
need to simulate the forward process for time T = log(d/ǫ), which depends on d and 1/ǫ
logarithmly.



J. Mach. Learn., 4(2):108-127 116

The sparse structure. Since transitions only occur between neighbors on the hypercube
each time, we can use a more concise way to represent the score function

cx(t) =

[

px+e1

px
,

px+e2

px
, · · · ,

px+ed

px

]⊤
∈ R

d.

Here, ei denotes the vector with a 1 in the i-th coordinate and 0’s elsewhere, and the addi-
tion operator is defined modulo 2. Similarly, we use sx(t) to denote the score estimator.

Note that for a state space of size 2d, the discrete score function, defined by the ratio of

probabilities, is generally a function {0, 1}d × {0, 1}d → R. However, by leveraging the

sparse structure of the transitions, we can simplify this to a {0, 1}d× d→ R function. This
simplification enables more efficient computation when learning the discrete score func-
tion. Furthermore, as we will discuss in Section 4, this sparse structure greatly facilitates
the algorithmic implementation of the reversed process.

4 Main results

In this section, we present our algorithm and the analysis for implementing the sampling
dynamic, which is a reversed process corresponding to the independent flipping forward
process, with the discrete score function replaced by the score estimator. Because of (3.5),
the sampling dynamic is given by a CTMC with the generator

Q̂←x,y(t) =























sx(t)i, y = x + ei,

−
d

∑
i=1

sx(t)i, y = x,

0, otherwise.

(4.1)

4.1 Assumptions

To begin with, we introduce some assumptions related to the learning of the discrete score
function. Firstly, we assume the score estimator is ǫ-accurate in the score entropy loss.

Assumption 4.1. For some ǫ, δ > 0, the score estimator s satisfies

L(s) = 1

T − δ

∫ T

δ
EXt∼p(t)ℓ

(

cXt
(t), sXt

(t)
)

dt ≤ ǫ,

where ℓ : R
d × R

d → R is the Bregman distance with respect to the entropy function

h(x) = ∑
d
i=1 xi log xi given by

ℓ(c, s) = c− s− 〈∇h(s), s− c〉 =
d

∑
i=1

(

−ci + si + ci log
ci

si

)

.

Assumption 4.1 is an analogy of the L2-accuracy assumption that is widely used in the
theoretical works for the diffusion models in the SDE framework [4, 8, 10, 21–23]. There
are, however, two primary distinctions between Assumption 4.1 and the corresponding
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assumption for diffusion models on R
d. First, in our discrete setting, the L2 distance is re-

placed by the Bregman distance. This choice aligns with the structure of the CTMC frame-
work, where the KL divergence between path measures is characterized by the Bregman
distance (see Proposition 3.1) rather than the L2 distance for the SDE framework. Second,
we assume the score estimation error to be small on average over the time interval [δ, T],
in contrast to the assumption in continuous diffusion models, which assume a small aver-
age error over specific discretization points. This difference arises because our algorithm
employs the score estimator at randomly sampled times rather than at a fixed set of dis-
cretization points (see Algorithm 1 below). Both assumptions are reasonable because one
can sample times either uniformly or from a discrete set during the stochastic gradient
descent in the training process.

It is important to notice that the term L(s) in Assumption 4.1 is equivalent to (up to
a term independent of s) the objective functions used in the learning procedure, includ-
ing the implicit score entropy and the denoising score entropy discussed in Section 3.1.
Thus, Assumption 4.1 is satisfied if the objective function is optimized to the extent that
its function value is ǫ close to the minimum value.

The second assumption involves the uniform boundedness of the score estimator s.
This leads to a bounded transition rate in the sampling dynamics, thereby enabling the
algorithmic application of the uniformization technique. This assumption relies on the
observation that the probability ratio of the forward process (or the true discrete score
function) is uniformly bounded.

Proposition 4.1. Let p(t) be the distribution of the forward CTMC with generator Q given
in (3.5). For t > 0, the probability ratio between two neighbor states is bounded by

px+ei
(t)

px(t)
. max(1/t, 1), ∀ x ∈ {0, 1}d, i ∈ {1, . . . , d}.

Proof. Let g be the heat kernel defined in Proposition 3.2. Consider the conditional dis-
tribution p̃(a|x) ∝ pa(0)gx−a(t) that is the distribution of Xt conditional on X0. Then we
write the probability ratio as (in the following computation, all the addition is defined
modulo 2)

px+ei
(t)

px(t)
=

∑a+w=x+ei
pa(0)gw(t)

∑a+w=x pa(0)gw(t)

=
∑a+w=x pa(0)gw+ei

(t)

∑a+w=x pa(0)gw(t)

=
∑a+w=x pa(0)

(

gw+ei
(t)/gw(t)

)

gw(t)

∑a+w=x pa(0)gw(t)
. (4.2)

By the definition of g, we can compute the ratio

gw+ei
(t)

gw(t)
=

1− (−1)wie−2t

1 + (−1)wie−2t
.
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Substitute this to (4.2), we obtain

px+ei
(t)

px(t)
=

∑a+w=x pa(0)
((

1− (−1)wi e−2t
)

/
(

1 + (−1)wie−2t
))

gw(t)

∑a+w=x pa(0)gw(t)

=
∑a pa(0)

((

1− (−1)xi−aie−2t
)

/
(

1 + (−1)xi−aie−2t
))

gx−a(t)

∑a pa(0)gx−a(t)

= E p̃(a|x)

[

1− (−1)xi−ai e−2t

1 + (−1)xi−ai e−2t

]

.
1 + e−2t

1− e−2t
.

Since (1 + e−2t)/(1− e−2t) . max(1, 1/t), we complete the proof.

Note the bound in Proposition 4.1 is independent of the data distribution; thus, we do
not need any assumption on the structure of data distribution. Based on Proposition 4.1,
it is natural to assume the score estimator is also uniformly bounded.

Assumption 4.2. We assume there is a universal constant C such that

d

∑
i=1

sx(t)i ≤ Cd max(1, 1/t).

In practice, the constraint in Assumption 4.2 can be imposed by slightly modifying the
learned score function after training. For example, one can add a sigmoid layer before
the output for the score estimator to satisfy the desired bound. This modification will not
affect the accuracy of the learned score function according to Proposition 4.1.

4.2 Algorithm

We provide an algorithm, detailed in Algorithm 1 that exactly simulates the sampling dy-
namic. Our algorithm is based on the uniformization technique stated in Proposition 2.1.
Note Proposition 2.1 requires the uniform boundness condition for the transition rates,

which is not satisfied by the generator Q̂← in general. To address this, our algorithm
implements early stopping with a terminal time of T − δ. Then Assumption 4.2 ensures
the bound. Moreover, since the bound in Assumption 4.2 varies over time, we apply the
procedure from Proposition 2.1 with adaptive λ. Specifically, we introduce a partition
0 = t0 < t1 < · · · < tN = T − δ and set different λk values in different time intervals.
Combining all these ingredients leads to the formulation of Algorithm 1. The algorithm
outputs a sample from the distribution p̂←(T − δ), where p̂←(t) represents the distribu-
tion of the CTMC with the generator defined in (4.1) at time t.

4.3 Analysis of the algorithm

In this section, we provide a theoretical analysis of Algorithm 1 on its complexity and
error. In particular, we are interested in the following two aspects of Algorithm 1:
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• The algorithm complexity. In other words, how many steps are required to imple-
ment Algorithm 1?

• The error of the resulting distribution, i.e., the distance between the data distribution
p(0) and the distribution p̂←(T − δ) obtained by Algorithm 1.

Algorithm 1 Exact Aalgorithm for Implementing the Sampling Dynamic.

Input: A learned score function s that satisfies Assumption 4.2 with a constant C, total
time T, a time partition 0 = t0 < t1 < · · · < tN = T − δ, parameters λ1, λ2, · · · , λN .
Output: A sample from p̂←(T − δ).

Draw Y0 ∼ Unif({0, 1}d).
for k = 0 to N − 1 do

Draw M ∼ Poisson(λk+1(tk+1 − tk)).
Sample M points i.i.d. from Unif([tk, tk+1]) and sort them as τ1 < τ2 · · · < τM.
Set Z0 = Yk.
for j = 0 to M− 1 do

Set Zj+1 =



















Zj + ei, w.p.
sZj

(τj)i

λk+1
, 1 ≤ i ≤ d,

Zj, w.p. 1−
d

∑
i=1

sZj
(τj)i

λk+1
.

end for
Set Yk+1 = ZM.

end for
return YN .

Results for general data distribution. Firstly, we consider the setting that p(0) is a gen-
eral data distribution. We summarize the result in the following theorem.

Theorem 4.1. Suppose Assumption 4.2 holds. By choosing the time partition such that

tk+1 − tk ≤ c(T − tk+1), ∀ 0 ≤ k ≤ N − 1 (4.3)

for some absolute constant c and choosing λk’s by

λk =
Cd

min(1, T − tk)
,

the implementation of Algorithm 1 requires M ∼ Poisson(λ) steps with

λ = O
(

d
(

log(1/δ) + T
))

.

Moreover, if we further assume Assumption 4.1, Algorithm 1 outputs a distribution p̂←(T − δ)
such that
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1. The KL divergence between p̂←(T − δ) and p(δ) is bounded by

KL
(

p(δ)‖ p̂←(T − δ)
)

. de−T + Tǫ.

Choosing T ≍ log(d/ǫ) makes this Õ(ǫ) and λ = O(d log(d/ǫδ)).

2. The TV distance between p̂←(T − δ) and the data distribution is bounded by

TV
(

p(0), p̂←(T − δ)
)

.
√

de−T + Tǫ + (1− e−dδ).

Choosing T ≍ log(d/ǫ), δ ≍ √ǫ/d makes the error Õ(√ǫ), and λ = O(d log(d/ǫ3/4)).

Remark 4.1. Note that Poisson distribution satisfies super-exponential decaying tails, so
O(d log(1/λ)) steps are enough with high probability and λ = O(d log(d/ǫδ)) or λ =
O(d log(d/ǫ3/4)) describes the complexity of the algorithm.

Remark 4.2. The choice of the time partition (4.3) is quite flexible. This is because we only
care about the total number of transitions rather than the number of intervals N.

The proof is deferred to Appendix A.3. Our nearly linear dependence on d and loga-
rithm dependence on δ match the best result for the continuous diffusion model [4].

Results for data distribution with uniformly bounded score. In addition, if we fur-
ther assume the discrete score function of the data distribution (i.e. the probability ratio
between neighbor states) is uniformly bounded, we can simulate the sampling dynamic
without early stopping (i.e. δ = 0). In this case, we can improve the TV distance bound
between the data distribution and the sampled distribution in Theorem 4.1(2) to a KL di-
vergence bound.

Assumption 4.3. Suppose the data distribution p(0) satisfies

px+ei
(0)

px(0)
≤ L, ∀ x ∈ {0, 1}d, i ∈ {1, . . . , d}.

Theorem 4.2. Under Assumptions 4.1-4.3, let δ = 0, T ≍ log(d/ǫ), by choosing the time
partition 0 = t1 < · · · < tN = T and parameter λk’s appropriately in Algorithm 1, one can obtain
a distribution p̂←(T) that is Õ(ǫ) close to the data distribution within Poisson(O(d log(dL/ǫ)))
steps.

The proof is deferred to Appendix A.4. Notably, the algorithm complexity only has
a logarithm dependence on L, so we can get a reasonable guarantee even if L has an expo-
nential dependence on d.

Discussion on the near optimality. Note that for the true reversed process, the expecta-
tion value of the intensity of each clock is given by

E

d

∑
i=1

px+ei
(t)

px(t)
= ∑

x∈{0,1}d

d

∑
i=1

px+ei
(t) =

d

∑
i=1

∑
x∈{0,1}d

px+ei
(t) = d.

Consequently, the expected number of transitions within a time interval of length 1 is Θ(d).
As a result, a linear dependence on d is unavoidable for simulating the reversed process.
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Comparison with {0, 1, . . . , n}d setting. [7, 25] consider the forward following process

on {1, . . . , n}d with the generator Q: For two distinct states x, y ∈ {0, 1, . . . , n}d, define
Qx,y = 1 if and only if x and y differ in exactly one entry. In this case, the typical num-

ber of transitions that occur within a unit time interval is Θ(n2d) and the convergence of
the forward process requires at least Ω(1) time. So Ω(n2d) steps are required to simu-

late the reversed process. However, if we transform the data to the {0, 1}d log(n) structure
and utilize our hypercube framework, the n, d dependence of the algorithm complexity is
reduced to Õ(d log(n)). Therefore, our hypercube framework provides a more efficient
implementation of the discrete diffusion model.

Discussion on the generalization to general forward process. In practice, forward pro-
cesses beyond independent flipping are often employed, such as the absorbing process
(see, for example, [25, Section 3.3]). Our analysis has the potential to generalize to dis-
crete diffusion models with general forward processes. Recall that the key ingredients in
our analysis include: (1) a log-Sobolev inequality bound for the forward process, which
ensures the rapid convergence of the forward process in KL divergence (Proposition 3.3);
and (2) a uniform bound on the true score function (Proposition 4.1), which guarantees
the uniform boundedness of the approximately accurate score estimator in the sampling
dynamics (Assumption 4.2) and makes the uniformization-based algorithm practical. For
a CTMC forward process with a general Q-matrix, one may establish the convergence
results by proving these two ingredients for the given process.

5 Conclusion

In this paper, we consider an algorithm for discrete diffusion models based on uniformiza-
tion and present the first theoretical analysis of the discrete diffusion model. Although our
nearly linear dependence result aligns with the state-of-art result for diffusion models on

R
d and is nearly optimal in the current framework, there are several interesting further

directions to explore.

Faster algorithm with theoretical guarantee. Our algorithm provides an exact simula-
tion of the reversed process, where the number of transitions corresponds to the worst-
case bound of the clock intensities. Although we believe that the Ω(d) complexity is not
improvable in general, there may be potential in investigating an approach that simulates
transitions adaptive to the clock of the current state. This might require some discretiza-
tion and further analysis to quantify the discretization error.

Improve the graph structure of the forward process. We consider the independent flip-
ping process on the hypercube as the forward process. This process converges to the uni-
form distribution in O(log d) time and results in a reversed process that transitions Ω(d)
times. A natural question is if one can employ a better structure for the design of the for-
ward process so that the forward process still converges exponentially but the number of
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transitions times is reduced. One idea is to apply the forward process on the Ramanujan
graph [26], but the numerical simulation will become hard.

Appendix A Omitted proof

A.1 An intuitive proof of Proposition 3.1

Proof. Let X̃←t be a CTMC with the estimated generator Q̂← starting from X̃←0 ∼ p(T). Let

P̃
← be the path measure of (X̃←t ). By the chain rule of KL divergence

KL(P←‖P̂←) = KL
(

p(T)‖γ
)

+ KL(P←‖P̃←).

Now we give an intuitive computation of KL(P←‖P̃←). Consider a path γ from time
t = 0 to T (corresponding to the time of the reversed process (X←t )0≤t≤T). Let us first
compute the probability ratio P

←(γ)/P̃
←(γ). We discretize γ(t) with step size ǫ as

x0, x1, . . . , xL, where xj = γ(ǫj) and L = T/ǫ. P
←(γ)/P̃

←(γ) is a product of multiple

terms ∏i(P
←(xi+1|xi)/P̃

←(xi+1|xi)):

• When xi = xi+1, the ratio is (1−∑y 6=xi
Qy,xi

cxi,yǫ)/(1− ∑y 6=xi
Qy,xi

sxi,yǫ).

• When xi 6= xi+1, the ratio is (Qxi+1,xi
cxi,xi+1

ǫ)/(Qxi+1,xi
sxi,xi+1

ǫ) = cxi,xi+1
/sxi,xi+1

.

Taking the product and log gives

log
dP
←(γ)

dP̃←(γ)
≈ ∑

i:no jump

(

∑
y 6=xi

Qy,xi
(−cxi,y + sxi,y)

)

ǫ + ∑
i:jump

∑
y 6=xi

log
cxi,y

sxi,y
δxi→y,

where δxi→y is equal to 1 if xi jumps to y otherwise 0.
The KL divergence is then the expectation of this quantity with respect to P

←. To
simplify, we use the fact that Eδxi→y = Qy,xi

cxi,yǫ for y 6= xi and take the limit ǫ → 0 to
obtain

EP← log
dP
←(γ)

dP̃←(γ)

= EP←

[

∫ T

0
∑

y 6=X←t

Qy,X←t (T − t)

×
(

− cX←t ,y(T − t) + sX←t ,y(T − t) + cX←t ,y log
cX←t ,y(T − t)

sX←t ,y(T − t)

)

dt

]

.

Finally, by reversing the time, we have

EP← log
dP
←(γ)

dP̃←(γ)
= EP

[

∫ T

0
∑

y 6=Xt

Qy,Xt
(t)

(

−cXt,y(t) + sXt,y(t) + cXt,y log
cXt,y(t)

sXt,y(t)

)

dt

]

,

which completes the proof.
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A.2 Proof of Proposition 3.3

Proof. For the first inequality, it is shown in [6, Theorem 5.1] that the uniform distribution
over the hypercube satisfies the log-Sobolev inequality with constant 2 (with respect to the
Markov semigroup associated with the generator Q). This implies the exponential mixing
of the forward process in KL divergence (see, for example, [11])

KL
(

p(T)‖γ
)

≤ e−TKL
(

p(0)‖γ
)

.

The second inequality is because the KL divergence between p0 and the uniform dis-
tribution can be decomposed to

KL(p0‖γ) = ∑
x∈{0,1}d

px(0) log px(0)− ∑
x∈{0,1}d

px(0) log(1/2d)

. ∑
x∈{0,1}d

px(0) log px(0) + d. (A.1)

For distributions on a finite set, the maximum entropy is achieved by the uniform dis-
tribution, so the entropy term in (A.1) could be bounded by the entropy of the uniform
distribution, which is d (up to a constant).

A.3 Proof of Theorem 4.1

Proof of the bound of λ. In Algorithm 1, since the number of steps in each time interval
[tk , tk+1] is sampled from Mk ∼ Poisson(λk(tk − tk−1)), the total number of steps follows
a Poisson distribution with parameter:

λ :=
N

∑
k=1

λk(tk − tk−1).

Now we evaluate µ. Recall that

λk =
Cd

min(1, T − tk)
.

Let sk = T − tk. Recall that

λk =
Cd

min(1, sk)
, sk − sk+1 ≤ csk+1.

For δ ≤ sk ≤ 1 we have

∑
k:δ≤sk<1

λk(sk−1 − sk) = ∑
k:sk<1

Cd

sk
(sk−1 − sk)

. ∑
k:sk<1

C(c + 1)d

sk−1
(sk−1 − sk)

.

∫ 1

δ

d

s
ds = d log(1/δ).
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For sk ≥ 1, we have

∑
k:1≤sk≤T

λk(sk−1 − sk) = ∑
k:1≤sk≤T

Cd(sk − sk−1) = Cd(T − 1) . dT.

Combining the two parts, we conclude that

λ =
N

∑
k=1

λk(tk − tk−1) =
N

∑
k=1

λk(sk − sk−1)

= ∑
k:δ≤sk<1

λk(sk−1 − sk) + ∑
k:1≤sk≤T

λk(sk−1 − sk)

. d
(

T + log(1/δ)
)

.

Proof of the KL divergence bound. Since our algorithm exactly simulates the reversed
process, from Proposition 3.1, the KL divergence between p(δ) and p̂←(T− δ) is bounded
by the KL divergence between the two path measures

KL
(

p(δ)‖ p̂←(T − δ)
)

≤ KL
(

p(T)‖Unif({0, 1}d)
)

+
∫ T

δ
EXt∼p(t)ℓ

(

cXt
(t), sXt

(t)
)

, (A.2)

where ℓ : R
d ×R

d → R is given by

ℓ(c, s) =
d

∑
i=1

(

−ci + si + ci log
ci

si

)

.

In the right-hand side of (A.2), the first term is bounded by Proposition 3.3 that

KL
(

p(T)‖Unif({0, 1}d)
)

. de−T,

the second term is bounded by Tǫ under Assumption 4.1. Thus, we obtain the desired
bound.

Proof of the TV distance bound. We bound the TV distance between the data distribu-
tion p0 and the perturbed distribution pδ. Consider the forward process (Xt)t≥0. Since
(X0, Xδ) gives a coupling of p0 and pδ, we have

TV(p0, pδ) ≤ P(X0 6= Xδ).

P(X0 6= Xδ) equals to the probability that a Poisson(dδ) random variable is nonzero,

which is 1− e−dδ. Thus by triangle inequality and Pinsker’s inequality TV .
√

KL, we
have

TV
(

p0, p̂←(T − δ)
)

≤ dδ + TV
(

pδ, p̂←(T − δ)
)

. (1− e−dδ) +
√

Tǫ + de−T.

We complete the proof. �
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A.4 Proof of Theorem 4.2

Lemma A.1. Let p(t) be the distribution of the forward CTMC with generator Q given in (3.5).
Suppose Assumption 4.3 holds. For any t > 0 we have

px+ei
(t)

px(t)
≤ L.

Proof. Let g be the heat kernel defined in Proposition 3.2. Consider the conditional distri-
bution p̃(a|x) ∝ pa(0)gx−a(t) that is the distribution of Xt conditional on X0. We write the
probability ratio as

px+ei
(t)

px(t)
=

∑a+w=x+ei
pa(0)gw(t)

∑a+w=x pa(0)gw(t)

=
∑a+w=x pa+ei

(0)gw(t)

∑a+w=x pa(0)gw(t)

=
∑a+w=x pa(0)

(

pa+ei
(t)/pa(t)

)

gw(t)

∑a+w=x pa(0)gw(t)

= E p̃(a|x)
pa+ei

(0)

pa(0)
≤ L,

where the last inequality comes from Assumption 4.3. We complete the proof.

Proof of Theorem 4.2. The KL divergence bound is similar to the proof of Theorem 4.1. We
only need to consider the total number of transitions. We choose the time partition such
that

tN = T, tN−1 = T − 1/L,

tk+1 − tk ≤ c(T − tk+1), ∀ tk+1 − tk ≤ c(T − tk+1), 1 ≤ k ≤ N − 2

for some absolute constant c and choose λk’s by

λN =
d

L
, λk =

Cd

min(1, T − tk)
, 1 ≤ k ≤ N − 1.

Let sk = T − tk. The total number of steps follows a Poisson distribution with parameter

λ = ∑
N
k=1 λk(tk − tk−1). We have

λ = λN(tN − tN−1) +
N−1

∑
k=1

λk(tk − tk−1)

≤ 1 + ∑
k:1/L≤sk<1

Cd

sk
(sk−1 − sk) + ∑

k:1≤sk≤T

Cd(sk − sk−1)

. d +
∫ 1

1/L

d

s
ds + ∑

k:1≤sk≤T

d(sk − sk−1) . d (T + log L) .

We complete the proof.
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