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Abstract. We address binary classification using neural ordinary differential equations from the perspective
of simultaneous control of N data points. We consider a single-neuron architecture with parameters fixed as
piecewise constant functions of time. In this setting, the model complexity can be quantified by the number of
control switches. Previous work has shown that classification can be achieved using a point-by-point strategy
that requires O(N) switches. We propose a new control method that classifies any arbitrary dataset by se-
quentially steering clusters of d points, thereby reducing the complexity to O(N/d) switches. The optimality
of this result, particularly in high dimensions, is supported by some numerical experiments. Our complexity
bound is sufficient but often conservative because same-class points tend to appear in larger clusters, simpli-
fying classification. This motivates studying the probability distribution of the number of switches required.
We introduce a simple control method that imposes a collinearity constraint on the parameters, and analyze
a worst-case scenario where both classes have the same size and all points are i.i.d. Our results highlight
the benefits of high-dimensional spaces, showing that classification using constant controls becomes more
probable as d increases.
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1 Introduction

At the heart of machine learning lies supervised learning [36], a framework that has been
successfully applied in a vast number of domains [4, 37]. The main objective is to learn
an unknown mapping F : X → Y . To achieve this, a model F̂ : X → Y to approximate F
is constructed by minimizing a loss function, using only the available – possibly noisy –
values of F over a finite dataset D ⊂ X × Y . Our focus is on evaluating the minimal
complexity required for F̂ to fit the points in D without error.

In the context of data classification, the range of F is finite, and its elements are referred
to as labels. Over the years, a wide variety of models have been developed, with no-
table examples including linear discriminants [21], support vector machines [10], random

*Corresponding author. antonio.alvarezl@uam.es
†rafael.orive@icmat.es
‡enrique.zuazua@fau.de

https://www.global-sci.com/jml Global Science Press



J. Mach. Learn., 4(2):128-156 129

forests [7], and neural networks [45]. In [16], a methodology from a control perspective is
proposed, based on modeling deep residual networks (ResNets, [28]) as continuous-time
dynamical systems known as neural ordinary differential equations (neural ODEs).

Neural ODEs have seen the development of several variants [8,26,41], yet the standard
form remains as

{

ẋ(t) = W(t)σ

(

A(t) x(t) + b(t)
)

, t ∈ (0, T),

x(0) = x0,
(1.1)

where

• x0 ∈ R
d is an input point.

• (W, A, b) ∈ L∞((0, T), R
d×p ×R

p×d ×R
p) are parameters to be trained.

• d, p ≥ 1 are the state dimension and the width of the model, respectively.

• σ : Rp → Rp is a prefixed nonlinear Lipschitz function applied component-wise.

Existence and uniqueness of the solution to (1.1) is guaranteed by the Cauchy-Lipschitz
theorem, ensuring the well-definedness of the flow map

Φt(·; W, A, b) : x0 ∈ R
d 7−→ x(t) ∈ R

d, t ∈ [0, T]. (1.2)

The formulation of (1.1) naturally frames supervised learning as a control problem. Here,

the input space is X = Rd, and the parameters (W, A, b) serve as controls that simultane-

ously guide all input points toward their respective target positions in Rd. To match the

output space, a mapping g : R
d → Y is introduced as a final layer. The complete model

is thus defined by the composition F̂ = g ◦ΦT.
We focus on binary classification with a hard classifier, whereby Y = {1, 0} and g is

the characteristic function of a fixed set. Nonetheless, our results can be extended to any
multiclass setting by fixing g as a weighted sum of predefined characteristic functions,
each corresponding to a distinct label.

Neural ODEs were originally conceived as a tool for understanding deep ResNets, but
they have since made a significant impact on machine learning. Their continuous-time
framework facilitates mathematical analysis and provides practical benefits like incorpo-
rating structure or the design of new discrete schemes. For more details, we refer to [16].

Notation

• Scalars are denoted by plain letters, vectors by boldface letters, and matrices by up-
percase letters. The scalar product of two vectors u, v is written as u · v.

• Subscripts identify elements of a set. Superscripts identify components of a vector.

• {e1, . . . , ed} denotes the canonical basis in Rd.

• Sd−1 denotes the (d− 1)-dimensional sphere in Rd.

• The cardinality of a set X is denoted by |X |.
• For x ∈ R, we write ⌈x⌉ := min{n ∈ Z : n ≥ x}, ⌊x⌋ := max{n ∈ Z : n ≤ x}.
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