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Tangent Differential Privacy
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Abstract. Differential privacy is a framework for protecting the identity of individual data points in the
decision-making process. In this note, we propose a new form of differential privacy, known as tangent dif-
ferential privacy. Compared to the usual differential privacy, which is defined uniformly across data distribu-
tions, tangent differential privacy is tailored to a specific data distribution of interest. It also allows for general
distribution distances such as total variation distance and Wasserstein distance. In the context of risk min-
imization, we demonstrate that entropic regularization ensures tangent differential privacy under relatively
general conditions on the risk function.
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1 Introduction

Differential privacy is a framework for protecting the identity of individual data points
in the machine learning process. The most commonly discussed differential privacy is
ǫ-differential privacy. A randomized algorithm is called ǫ-differential private if, for any
two input data distributions that differ by one element, the ratio of the probabilities at
any outcome is bounded by at most exp(ǫ). The definition clearly shows that differential
privacy is a uniform concept across all data distributions. In many machine learning ap-
plications, one often cares about a specific data distribution and raises privacy concerns
about the impact of deleting or adding a single or small number of data points to this
specific data distribution.

To address such questions, we propose here tangent differential privacy, a privacy con-
cept tailored to a specific data distribution. When applying the case of risk minimization
(such as supervised learning), we demonstrate that entropic regularization guarantees tan-
gent differential privacy under relatively general conditions.

Related work. The concepts of ǫ-differential privacy and (ǫ, δ)-differential privacy
were first proposed in [9, 10] and a wonderful resource for this vast literature is [11]. Sev-
eral efforts have been devoted to relax or reformulate differential privacy, with examples
including Renyi differential privacy [17], concentrated differential privacy [6,12], and Lip-
schitz privacy [15]. In a broader context, other related forms of privacy concepts have
also been developed, such as local differential privacy [8,13,14] and the recently proposed
metric privacy [4, 5]. The concept of tangent differential privacy proposed here is closely
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related to Lipschitz privacy, though the latter is defined as a uniform concept across all
data distributions.

Contents. The rest of the note is organized as follows. Section 2 introduces the concept
of tangent differential privacy. Section 3 considers the risk minimization problem and
proposes entropic regularization as a solution of tangent differential privacy for both total
variation and Wasserstein distances. Section 4 concludes with some discussions.

2 Tangent differential privacy

Let X be the metric space of the data points, and P(X) be the space of distributions over X.
Let W be the metric space of outputs, P(W) be the space of distributions over W, and
F(W) be the space of bounded functions over W. Here, the output space W can be quite
general, such as R

n, the space of regression functions, or the space of neural network
weights [1]. To discuss differential privacy, let A be a randomized algorithm that takes
p ∈ P(X) and produces a randomized output w. Because A is random, we can regard it
as a (typically nonlinear) map

A : P(X) → P(W),

taking p(x) to a distribution q(w). When q(w) has a bounded density, we can also consider
its logarithm

log ◦A : P(X) → F(W),

taking p(x) to a function (log q)(w).
Let us denote Tp and Tq as the tangent spaces of signed measures at p and q, respec-

tively. The tangent map of A at p is DAp : Tp → Tq. Suppose that p is the data distribution
of interest. For any p̃ close to p, the linear approximation suggests that

Ap̃ − Ap ≈ DAp · ( p̃ − p). (2.1)

In the usual setting, p can be an empirical distribution with N data samples {xi} and p̃ is
obtained by removing a distinguished sample xk

p(x) =
1

N

N

∑
i=1

δxi
(x), p̃(x) =

1

N − 1 ∑
i 6=k

δxi
(x).

This also extends naturally to the situation where p̃ is obtained from p by changing a small
number of data points.

Similarly, if Tlog q is the tangent space at log q, the tangent map of log ◦A at p is

D(log ◦A)p : Tp → Tlog q.

For any p̃ close to p, we have

log(Ap̃)− log(Ap) ≈ D(log ◦A)p · ( p̃ − p). (2.2)
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