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Tangent Differential Privacy
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Abstract. Differential privacy is a framework for protecting the identity of individual data points in the
decision-making process. In this note, we propose a new form of differential privacy, known as tangent dif-
ferential privacy. Compared to the usual differential privacy, which is defined uniformly across data distribu-
tions, tangent differential privacy is tailored to a specific data distribution of interest. It also allows for general
distribution distances such as total variation distance and Wasserstein distance. In the context of risk min-
imization, we demonstrate that entropic regularization ensures tangent differential privacy under relatively
general conditions on the risk function.
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1 Introduction

Differential privacy is a framework for protecting the identity of individual data points
in the machine learning process. The most commonly discussed differential privacy is
e-differential privacy. A randomized algorithm is called e-differential private if, for any
two input data distributions that differ by one element, the ratio of the probabilities at
any outcome is bounded by at most exp(¢€). The definition clearly shows that differential
privacy is a uniform concept across all data distributions. In many machine learning ap-
plications, one often cares about a specific data distribution and raises privacy concerns
about the impact of deleting or adding a single or small number of data points to this
specific data distribution.

To address such questions, we propose here tangent differential privacy, a privacy con-
cept tailored to a specific data distribution. When applying the case of risk minimization
(such as supervised learning), we demonstrate that entropic regularization guarantees tan-
gent differential privacy under relatively general conditions.

Related work. The concepts of e-differential privacy and (e, d)-differential privacy
were first proposed in [9}[10] and a wonderful resource for this vast literature is [11]]. Sev-
eral efforts have been devoted to relax or reformulate differential privacy, with examples
including Renyi differential privacy [17], concentrated differential privacy [612], and Lip-
schitz privacy [15]. In a broader context, other related forms of privacy concepts have
also been developed, such as local differential privacy [8,1314] and the recently proposed
metric privacy [4,5]. The concept of tangent differential privacy proposed here is closely
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related to Lipschitz privacy, though the latter is defined as a uniform concept across all
data distributions.

Contents. The rest of the note is organized as follows. Section[2lintroduces the concept
of tangent differential privacy. Section 3] considers the risk minimization problem and
proposes entropic regularization as a solution of tangent differential privacy for both total
variation and Wasserstein distances. Sectiond concludes with some discussions.

2 Tangent differential privacy

Let X be the metric space of the data points, and P (X) be the space of distributions over X.
Let W be the metric space of outputs, P(W) be the space of distributions over W, and
F (W) be the space of bounded functions over W. Here, the output space W can be quite
general, such as R", the space of regression functions, or the space of neural network
weights [1]. To discuss differential privacy, let A be a randomized algorithm that takes
p € P(X) and produces a randomized output w. Because A is random, we can regard it
as a (typically nonlinear) map

A:P(X) = PW),

taking p(x) to a distribution g(w). When q(w) has a bounded density, we can also consider
its logarithm
logoA:P(X) — F(W),

taking p(x) to a function (logq)(w).

Let us denote T, and T, as the tangent spaces of signed measures at p and g, respec-
tively. The tangent map of A at pis DA, : T, — Tj. Suppose that p is the data distribution
of interest. For any p close to p, the linear approximation suggests that

Ap— Ap~DA,- (p—p). (2.1)

In the usual setting, p can be an empirical distribution with N data samples {x;} and p is
obtained by removing a distinguished sample x;

P = £ Y00, P) = — = Yo (x).
NZ= ™ N - i#k '

This also extends naturally to the situation where f is obtained from p by changing a small
number of data points.
Similarly, if T, is the tangent space at log g, the tangent map of log oA at p is

D(logoA)p: Ty — Tiogg-
For any p close to p, we have

log(Ap) —log(Ap) =~ D(logoA), - (P — p). (22)
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